High-power electrolyzer characterization via smart power converters

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-30 DOI:10.1016/j.ijhydene.2024.11.372
Alain Sanchez-Ruiz , Matheus T. de Groot
{"title":"High-power electrolyzer characterization via smart power converters","authors":"Alain Sanchez-Ruiz ,&nbsp;Matheus T. de Groot","doi":"10.1016/j.ijhydene.2024.11.372","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel concept to extract electrolyzer characteristics using advanced power converters. By synthesizing current and voltage perturbations it becomes possible to perform measurements that are comparable to electrochemical impedance spectroscopy, a powerful technique that is now still mostly confined to laboratories. Since the new concept is more limited in terms of frequency, we have investigated in what frequency range maximum phase shifts and impedances can be observed. For traditional and advanced alkaline electrolyzers this is from hundreds of millihertz to hundreds of Hertz, which is compatible with the capabilities of advanced power converters. With a combined power supply-electrolyzer model we show that it is indeed possible to obtain the same type of information as with electrochemical impedance spectroscopy. Biggest challenge lies in the accurate measurements of impedances that are in the order of microohms. The presented concept can potentially be used for stack or even cell lifetime monitoring and can facilitate predictive maintenance.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"96 ","pages":"Pages 1243-1250"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924050687","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel concept to extract electrolyzer characteristics using advanced power converters. By synthesizing current and voltage perturbations it becomes possible to perform measurements that are comparable to electrochemical impedance spectroscopy, a powerful technique that is now still mostly confined to laboratories. Since the new concept is more limited in terms of frequency, we have investigated in what frequency range maximum phase shifts and impedances can be observed. For traditional and advanced alkaline electrolyzers this is from hundreds of millihertz to hundreds of Hertz, which is compatible with the capabilities of advanced power converters. With a combined power supply-electrolyzer model we show that it is indeed possible to obtain the same type of information as with electrochemical impedance spectroscopy. Biggest challenge lies in the accurate measurements of impedances that are in the order of microohms. The presented concept can potentially be used for stack or even cell lifetime monitoring and can facilitate predictive maintenance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过智能功率转换器表征大功率电解槽
本文提出了一种利用先进功率转换器提取电解槽特性的新概念。通过合成电流和电压扰动,可以进行与电化学阻抗谱相当的测量,电化学阻抗谱是一种强大的技术,现在仍然主要局限于实验室。由于新概念在频率方面更受限制,我们研究了在什么频率范围内可以观察到最大相移和阻抗。对于传统和先进的碱性电解槽,这是从数百毫赫到数百赫兹,这与先进的功率转换器的能力兼容。结合电源-电解槽模型,我们表明确实有可能获得与电化学阻抗谱相同类型的信息。最大的挑战在于精确测量微欧姆量级的阻抗。所提出的概念可以潜在地用于堆栈甚至单元寿命监视,并且可以促进预测性维护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Mesoporous silica-modified metal organic frameworks derived bimetallic electrocatalysts for oxygen reduction reaction in microbial fuel cells Adoption of hydrogen-based steel production under uncertain domestic hydrogen availability: An Indonesian case study Possible role of nanobubbles in the pulsed plasma production of hydrogen Enhanced thermophilic hydrogen production from co-substrate of pretreated waste activated sludge and food waste: Analysis from microbial growth and metabolism Site suitability analysis for green hydrogen production using multi-criteria decision-making methods: A case study in the state of Ceará, Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1