Influence of 3D-printed cellular shoe soles on plantar pressure during running − Experimental and numerical studies

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biocybernetics and Biomedical Engineering Pub Date : 2024-10-01 DOI:10.1016/j.bbe.2024.11.004
Paweł Baranowski , Aleksandra Kapusta , Paweł Płatek , Marcin Sarzyński
{"title":"Influence of 3D-printed cellular shoe soles on plantar pressure during running − Experimental and numerical studies","authors":"Paweł Baranowski ,&nbsp;Aleksandra Kapusta ,&nbsp;Paweł Płatek ,&nbsp;Marcin Sarzyński","doi":"10.1016/j.bbe.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>The paper explores the potential of additive manufacturing (AM), experiments and simulations to develop a personalized shoe sole, with cellular topology used as the insert that minimizes the plantar pressure during running. Five different topologies were manufactured by Fused Filament Fabrication 3D printing technique using thermoplastic polyurethane TPU 95 filaments and tested experimentally and using FEA under compression conditions. The error between the maximum peak force and specific energy absorbed (SEA) from the model and experiment were less than 4.0 % and 6.0 %, respectively. A deformable FE foot model was developed, which was validated against data from the literature on balanced standing and the landing impact test carried out in the study. For the first case, the predicted maximum pressure (<em>P<sub>peak</sub></em> = 0.20 MPa) was positioned between the data presented in previous papers (0.16 MPa ÷ 0.30 MPa). In the second case, the experimentally measured and numerically predicted force peak values were nearly identical: 1760 N and 1720 N, respectively, falling with the range of 2.2 ÷ 2.5 BW similarly to other studies. Finally, a shoe sole design was proposed based on these topologies, which was simulated in the rearfoot impact to investigate the deformation of the sole and its influence on the foot plantar pressure peak and its distribution. The findings indicated that the sole with cellular structure could drastically reduce plantar pressure and improve overall footwear performance. This research provides valuable guidance and insights for designing, modelling, and simulating customized shoe sole manufactured using the 3D printing technique.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 858-873"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000871","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The paper explores the potential of additive manufacturing (AM), experiments and simulations to develop a personalized shoe sole, with cellular topology used as the insert that minimizes the plantar pressure during running. Five different topologies were manufactured by Fused Filament Fabrication 3D printing technique using thermoplastic polyurethane TPU 95 filaments and tested experimentally and using FEA under compression conditions. The error between the maximum peak force and specific energy absorbed (SEA) from the model and experiment were less than 4.0 % and 6.0 %, respectively. A deformable FE foot model was developed, which was validated against data from the literature on balanced standing and the landing impact test carried out in the study. For the first case, the predicted maximum pressure (Ppeak = 0.20 MPa) was positioned between the data presented in previous papers (0.16 MPa ÷ 0.30 MPa). In the second case, the experimentally measured and numerically predicted force peak values were nearly identical: 1760 N and 1720 N, respectively, falling with the range of 2.2 ÷ 2.5 BW similarly to other studies. Finally, a shoe sole design was proposed based on these topologies, which was simulated in the rearfoot impact to investigate the deformation of the sole and its influence on the foot plantar pressure peak and its distribution. The findings indicated that the sole with cellular structure could drastically reduce plantar pressure and improve overall footwear performance. This research provides valuable guidance and insights for designing, modelling, and simulating customized shoe sole manufactured using the 3D printing technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
期刊最新文献
Automating synaptic plasticity analysis: A deep learning approach to segmenting hippocampal field potential signal Probabilistic and explainable modeling of Phase–Phase Cross-Frequency Coupling patterns in EEG. Application to dyslexia diagnosis Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms Profiled delivery of bicarbonate during weekly cycle of hemodialysis Lightweight beat score map method for electrocardiogram-based arrhythmia classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1