Analyzing bearing capacity changes due to vibration in discrete element method simulations

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Journal of Terramechanics Pub Date : 2024-11-29 DOI:10.1016/j.jterra.2024.101031
Tomohiro Watanabe , Ryoma Higashiyama , Dai Watanabe , Kojiro Iizuka
{"title":"Analyzing bearing capacity changes due to vibration in discrete element method simulations","authors":"Tomohiro Watanabe ,&nbsp;Ryoma Higashiyama ,&nbsp;Dai Watanabe ,&nbsp;Kojiro Iizuka","doi":"10.1016/j.jterra.2024.101031","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, legged robots have gained significant attention as highly mobile platforms for planetary exploration. However, the surfaces of celestial bodies such as the Moon are mainly composed of loose materials, leading to slippage due to the deformation of the surface under the movements of the rover’s legs. To address this issue, we proposed a walking method designed to minimize slippage. Our previous research demonstrated that applying vibrations can increase both the shear strength of the ground and the amount of the rover’s leg subsidence, thereby enhancing the ground’s bearing capacity, which is related to the counterforce provided by the ground against the legs of the rover. For the robot to perform optimally, it is essential to accurately estimate this bearing capacity to select efficient vibration settings. In this study, we utilized the discrete element method (DEM) to simulate the ground’s bearing capacity under various vibrational influences changing both the sinkage depth of a leg and the vibration frequency. Our simulations successfully mirrored the real-world effects of vibrations on bearing capacity, providing insightful perspectives on how vibration can be used to enhance ground support for these robotic explorers.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"118 ","pages":"Article 101031"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000739","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, legged robots have gained significant attention as highly mobile platforms for planetary exploration. However, the surfaces of celestial bodies such as the Moon are mainly composed of loose materials, leading to slippage due to the deformation of the surface under the movements of the rover’s legs. To address this issue, we proposed a walking method designed to minimize slippage. Our previous research demonstrated that applying vibrations can increase both the shear strength of the ground and the amount of the rover’s leg subsidence, thereby enhancing the ground’s bearing capacity, which is related to the counterforce provided by the ground against the legs of the rover. For the robot to perform optimally, it is essential to accurately estimate this bearing capacity to select efficient vibration settings. In this study, we utilized the discrete element method (DEM) to simulate the ground’s bearing capacity under various vibrational influences changing both the sinkage depth of a leg and the vibration frequency. Our simulations successfully mirrored the real-world effects of vibrations on bearing capacity, providing insightful perspectives on how vibration can be used to enhance ground support for these robotic explorers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用离散元法模拟分析振动引起的承载力变化
最近,有腿机器人作为行星探测的高机动性平台受到了极大的关注。然而,月球等天体的表面主要由松散的物质组成,在月球车腿的运动下,表面会发生变形,导致滑动。为了解决这个问题,我们提出了一种旨在最小化滑移的行走方法。我们之前的研究表明,施加振动可以增加地面的抗剪强度和月球车腿下沉的量,从而提高地面的承载能力,这与地面对月球车腿提供的反作用力有关。为了使机器人发挥最佳性能,准确估计其承载能力以选择有效的振动设置至关重要。本研究采用离散元法(DEM)模拟了不同振动影响下的地基承载力,同时改变腿的下沉深度和振动频率。我们的模拟成功地反映了振动对承载能力的现实影响,为如何利用振动来增强这些机器人探险者的地面支持提供了有见地的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
期刊最新文献
Analyzing bearing capacity changes due to vibration in discrete element method simulations Interaction-aware control for robotic vegetation override in off-road environments Optimization of subsoiler design using similitude-based DEM simulation and soil bin testing on cohesive-frictional artificial soil Editorial: Soil modeling and simulation for terramechanics applications of manned and unmanned autonomous vehicles A Riemann-based SPH formulation for modelling elastoplastic soil behaviour using a Drucker–Prager model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1