Probabilistic modelling of steel column response to far-field detonations

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Reliability Engineering & System Safety Pub Date : 2024-11-19 DOI:10.1016/j.ress.2024.110665
Jaswanth Gangolu, Hezi Y. Grisaro
{"title":"Probabilistic modelling of steel column response to far-field detonations","authors":"Jaswanth Gangolu,&nbsp;Hezi Y. Grisaro","doi":"10.1016/j.ress.2024.110665","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the deficiency of current design guidelines for blast loadings on steel structures, this research develops probabilistic models for steel wide-flange columns under axial and far-field blast loading on both their weak and strong axes. A total of 160 finite element (FE) simulations were conducted using ANSYS LS-DYNA, with columns subjected to different Axial Load Ratios (ALRs) and blast impulses. Validation against two experimental tests showed a strong correlation in displacement plots, with a material model accounting for strain rate effects. Probabilistic models for predicting maximum displacement and residual axial capacity were formulated using Bayesian inference and posterior statistics. These models were developed by incorporating dimensionless physics-based explanatory functions. The slenderness ratio of the column was identified as the most influential. The models account for uncertainties such as material and geometric properties, as well as strain rate effects. Graphical plots between the ALR and Damage Index (DI) were examined to assess the column's damage level. Furthermore, the probability of failure (fragility) of four columns for similar blast impulse was assessed w.r.t DI. These models along with ALR vs DI plots will be useful tools to know the level of building occupancy and retrofitting options.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110665"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007361","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the deficiency of current design guidelines for blast loadings on steel structures, this research develops probabilistic models for steel wide-flange columns under axial and far-field blast loading on both their weak and strong axes. A total of 160 finite element (FE) simulations were conducted using ANSYS LS-DYNA, with columns subjected to different Axial Load Ratios (ALRs) and blast impulses. Validation against two experimental tests showed a strong correlation in displacement plots, with a material model accounting for strain rate effects. Probabilistic models for predicting maximum displacement and residual axial capacity were formulated using Bayesian inference and posterior statistics. These models were developed by incorporating dimensionless physics-based explanatory functions. The slenderness ratio of the column was identified as the most influential. The models account for uncertainties such as material and geometric properties, as well as strain rate effects. Graphical plots between the ALR and Damage Index (DI) were examined to assess the column's damage level. Furthermore, the probability of failure (fragility) of four columns for similar blast impulse was assessed w.r.t DI. These models along with ALR vs DI plots will be useful tools to know the level of building occupancy and retrofitting options.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢柱对远场爆炸响应的概率模拟
针对目前钢结构爆炸荷载设计指南的不足,本文建立了钢宽法兰柱在弱轴和强轴上承受轴向和远场爆炸荷载的概率模型。采用ANSYS LS-DYNA软件对柱体进行了160次有限元模拟,柱体受到不同轴向载荷比(alr)和冲击波的影响。对两个实验测试的验证表明,位移图与考虑应变率效应的材料模型之间存在很强的相关性。利用贝叶斯推理和后验统计建立了预测最大位移和剩余轴向容量的概率模型。这些模型是通过结合无量纲物理的解释函数而发展起来的。柱的长细比是影响最大的因素。这些模型考虑了材料和几何特性以及应变率效应等不确定性。检查损伤指数(DI)与ALR之间的图形图,以评估柱的损伤程度。在此基础上,对四根柱在相似爆炸冲击下的破坏概率(易碎性)进行了评价。这些模型以及ALR和DI图将是了解建筑物占用水平和改造选择的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
期刊最新文献
Image-based remaining useful life prediction through adaptation from simulation to experimental domain Unsupervised graph transfer network with hybrid attention mechanism for fault diagnosis under variable operating conditions A hybrid machine learning and simulation framework for modeling and understanding disinformation-induced disruptions in public transit systems Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks Generalized reassigning transform: Algorithm and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1