Unsupervised object-based spectral unmixing for subpixel mapping

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-11-30 DOI:10.1016/j.rse.2024.114514
Chengyuan Zhang , Qunming Wang , Peter M. Atkinson
{"title":"Unsupervised object-based spectral unmixing for subpixel mapping","authors":"Chengyuan Zhang ,&nbsp;Qunming Wang ,&nbsp;Peter M. Atkinson","doi":"10.1016/j.rse.2024.114514","DOIUrl":null,"url":null,"abstract":"<div><div>Subpixel mapping (SPM) addresses the widespread mixed pixel problem in remote sensing images by predicting the spatial distribution of land cover <em>within</em> mixed pixels. However, conventional pixel-based spectral unmixing, a key pre-processing step for SPM, neglects valuable spatial contextual information and struggles with spectral variability, ultimately undermining SPM accuracy. Additionally, while extensively utilized, supervised spectral unmixing is labor-intensive and user-unfriendly. To address these issues, this paper proposes a fully automatic, unsupervised object-based SPM (UO-SPM) model that exploits object-scale information to reduce spectral unmixing errors and subsequently enhance SPM. Given that mixed pixels are typically located at the edges of objects (i.e., the inner part of objects is characterized by pure pixels), segmentation and morphological erosion are employed to identify pure pixels within objects and mixed pixels at the edges. More accurate endmembers are extracted from the identified pure pixels for the secondary spectral unmixing of the remaining mixed pixels. Experimental results on 10 study sites demonstrate that the proposed unsupervised object (UO)-based analysis is an effective model for enhancing both spectral unmixing and SPM. Specifically, the spectral unmixing results of UO show an average increase of 3.65 % and 1.09 % in correlation coefficient (<em>R</em>) compared to Fuzzy-<em>C</em> means (FCM) and linear spectral mixture model (LSMM)-derived coarse proportions, respectively. Moreover, the UO-derived results of four SPM methods (i.e., Hopfield neural network (HNN), Markov random field (MRF), pixel swapping (PSA) and radial basis function interpolation (RBF)) exhibit an average increase of 5.89 % and 3.04 % in overall accuracy (OA) across the four SPM methods and 10 study sites compared to the FCM and LSMM-based results, respectively. Moreover, the proportions of both mixed and pure pixels are more accurately predicted. The advantage of UO-SPM is more evident when the size of land cover objects is larger, benefiting from more accurate identification of objects.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"318 ","pages":"Article 114514"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005406","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Subpixel mapping (SPM) addresses the widespread mixed pixel problem in remote sensing images by predicting the spatial distribution of land cover within mixed pixels. However, conventional pixel-based spectral unmixing, a key pre-processing step for SPM, neglects valuable spatial contextual information and struggles with spectral variability, ultimately undermining SPM accuracy. Additionally, while extensively utilized, supervised spectral unmixing is labor-intensive and user-unfriendly. To address these issues, this paper proposes a fully automatic, unsupervised object-based SPM (UO-SPM) model that exploits object-scale information to reduce spectral unmixing errors and subsequently enhance SPM. Given that mixed pixels are typically located at the edges of objects (i.e., the inner part of objects is characterized by pure pixels), segmentation and morphological erosion are employed to identify pure pixels within objects and mixed pixels at the edges. More accurate endmembers are extracted from the identified pure pixels for the secondary spectral unmixing of the remaining mixed pixels. Experimental results on 10 study sites demonstrate that the proposed unsupervised object (UO)-based analysis is an effective model for enhancing both spectral unmixing and SPM. Specifically, the spectral unmixing results of UO show an average increase of 3.65 % and 1.09 % in correlation coefficient (R) compared to Fuzzy-C means (FCM) and linear spectral mixture model (LSMM)-derived coarse proportions, respectively. Moreover, the UO-derived results of four SPM methods (i.e., Hopfield neural network (HNN), Markov random field (MRF), pixel swapping (PSA) and radial basis function interpolation (RBF)) exhibit an average increase of 5.89 % and 3.04 % in overall accuracy (OA) across the four SPM methods and 10 study sites compared to the FCM and LSMM-based results, respectively. Moreover, the proportions of both mixed and pure pixels are more accurately predicted. The advantage of UO-SPM is more evident when the size of land cover objects is larger, benefiting from more accurate identification of objects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Unsupervised object-based spectral unmixing for subpixel mapping An advanced dorsiventral leaf radiative transfer model for simulating multi-angular and spectral reflection: Considering asymmetry of leaf internal and surface structure Angular normalization of GOES-16 and GOES-17 land surface temperature over overlapping region using an extended time-evolving kernel-driven model Measuring topographic change after volcanic eruptions using multistatic SAR satellites: Simulations in preparation for ESA’s Harmony mission Mapping and reconstruct suspended sediment dynamics (1986–2021) in the source region of the Yangtze River, Qinghai-Tibet Plateau using Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1