Pyrolysis kinetics and reaction mechanism of waste medical masks by sectional heating process

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS Thermal Science and Engineering Progress Pub Date : 2024-12-01 DOI:10.1016/j.tsep.2024.103065
Yong Li, Shuo Liu, Fengfu Yin, Dong Liang
{"title":"Pyrolysis kinetics and reaction mechanism of waste medical masks by sectional heating process","authors":"Yong Li,&nbsp;Shuo Liu,&nbsp;Fengfu Yin,&nbsp;Dong Liang","doi":"10.1016/j.tsep.2024.103065","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 epidemic has led to a significant upsurge in the accumulation of waste medical masks. This work focuses on the detailed examination of waste medical masks’ pyrolysis kinetic and reaction mechanism, employing a sectional heating process. The degradation properties were analyzed via thermal gravimetric analysis and pyrolysis reactor. The comprehensive kinetic process was studied using model-free and model-fitting methods, which determined the apparent activation energy and pre-exponential factor. The calculated average value for these parameters was 221.32 kJ/mol and 2.6 <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>14</sup> min<sup>−1</sup>, respectively. The pyrolysis process was carried out at three distinct temperatures: 380, 470, and 490 ℃, corresponding to the initial peak degradation rate and final degradation temperatures determined by TGA results. The total yield of oil, gas and tar was 88.6 %, 11.3 % and 0.1 %, respectively. The identification and quantification of pyrolysis products were achieved through GC–MS and FTIR. It was observed that higher pyrolysis temperature facilitated the generation of alkanes and hydrocarbons with lower carbon chain lengths in oil products and propylene monomers in gas products. The dominant pyrolysis products in oil under 380 ℃, 470 ℃ and 490 ℃ were C20, C20 and C12 with the yield of 36.17 %, 48.96 % and 43.35 %, respectively. And the corresponding dominant products in gas all were propylene with the yield of 34.74 %, 53.02 % and 54.55 %, respectively. Furthermore, a reaction mechanism was postulated to elucidate the pyrolysis process under varying temperature conditions.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"56 ","pages":"Article 103065"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006838","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 epidemic has led to a significant upsurge in the accumulation of waste medical masks. This work focuses on the detailed examination of waste medical masks’ pyrolysis kinetic and reaction mechanism, employing a sectional heating process. The degradation properties were analyzed via thermal gravimetric analysis and pyrolysis reactor. The comprehensive kinetic process was studied using model-free and model-fitting methods, which determined the apparent activation energy and pre-exponential factor. The calculated average value for these parameters was 221.32 kJ/mol and 2.6 × 1014 min−1, respectively. The pyrolysis process was carried out at three distinct temperatures: 380, 470, and 490 ℃, corresponding to the initial peak degradation rate and final degradation temperatures determined by TGA results. The total yield of oil, gas and tar was 88.6 %, 11.3 % and 0.1 %, respectively. The identification and quantification of pyrolysis products were achieved through GC–MS and FTIR. It was observed that higher pyrolysis temperature facilitated the generation of alkanes and hydrocarbons with lower carbon chain lengths in oil products and propylene monomers in gas products. The dominant pyrolysis products in oil under 380 ℃, 470 ℃ and 490 ℃ were C20, C20 and C12 with the yield of 36.17 %, 48.96 % and 43.35 %, respectively. And the corresponding dominant products in gas all were propylene with the yield of 34.74 %, 53.02 % and 54.55 %, respectively. Furthermore, a reaction mechanism was postulated to elucidate the pyrolysis process under varying temperature conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
废医用口罩分段加热热解动力学及反应机理
新冠肺炎疫情导致废弃医用口罩的积累大幅增加。本文采用分段加热工艺,对废弃医用口罩的热解动力学和反应机理进行了详细的研究。通过热重分析和热解反应器对其降解性能进行了分析。采用无模型法和模型拟合法研究了综合动力学过程,确定了表观活化能和指前因子。这些参数的计算平均值分别为221.32 kJ/mol和2.6 × 1014 min−1。热解过程在380、470和490℃三个不同的温度下进行,对应于TGA结果确定的初始峰值降解速率和最终降解温度。石油、天然气和焦油的总收率分别为88.6%、11.3%和0.1%。通过GC-MS和FTIR对热解产物进行了鉴定和定量。研究发现,较高的热解温度有利于成品油生成低碳链长的烷烃和烃类,气生成丙烯单体。380℃、470℃和490℃条件下,原油的主要热解产物为C20、C20和C12,产率分别为36.17%、48.96%和43.35%。气体中相应的优势产物均为丙烯,产率分别为34.74%、53.02%和54.55%。在此基础上,对不同温度条件下的热解过程进行了反应机理分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermal Science and Engineering Progress
Thermal Science and Engineering Progress Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
7.20
自引率
10.40%
发文量
327
审稿时长
41 days
期刊介绍: Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.
期刊最新文献
Heat transfer phenomena and performance investigations for 3D fin-and-tube pulsating heat pipe heat exchanger under vertical and horizontal orientations Numerical exploration of heat transfer and friction factor in corrugated dual-pipe heat exchangers using SiO2 and CuO nanofluids Enhancing Part-Load performance of the simple recuperated supercritical carbon dioxide cycle through shaft separation The influence of microgrooves on the dynamics of drop spreading on textured surfaces Real-Time prediction of pool fire burning rates under complex heat transfer effects influenced by ullage height: A comparative study of BPNN and SVR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1