Efficient recovery of valuable metals from electroplating sludge smelting soot via a combined alkali roasting and acid-free aluminum salts leaching methods
Yufeng Wu, Fan Yang, Hang Zhao, Ziyi Xu, Qijun Zhang
{"title":"Efficient recovery of valuable metals from electroplating sludge smelting soot via a combined alkali roasting and acid-free aluminum salts leaching methods","authors":"Yufeng Wu, Fan Yang, Hang Zhao, Ziyi Xu, Qijun Zhang","doi":"10.1016/j.wasman.2024.11.038","DOIUrl":null,"url":null,"abstract":"<div><div>Electroplating sludge smelting soot (ESSS), contains high-grade value metals (such as Zn, Sn, Pb, precious metals Au and Pt) and large amounts of harmful elements Br and S, which could potentially cause valuable resources wastage and environmental pollution, therefore requires responsible recycling. An efficient and eco-friendly process for the cascade recovery of Zn, Sn, Pb, and precious metals Au and Pt from ESSS was proposed, combining NaOH roasting and acid-free aluminum salts leaching. Optimal NaOH roasting conditions achieved high extraction efficiencies for Zn, Sn, and Pb, which were then separated via water leaching. A novel Al(NO<sub>3</sub>)<sub>3</sub> + AlCl<sub>3</sub> leaching system was developed to recover Au and Pt from the enriched residue. By optimizing the NaOH roasting conditions and the Al(NO<sub>3</sub>)<sub>3</sub> + AlCl<sub>3</sub> leaching conditions, the decomposition and conversion of 99.91 % Zn, 99.56 % Sn, and 98.72 % Pb in ESSS were achieved, simultaneously accomplishing the leaching of 87.89 % Au and 100 % Pt. Mechanisms of NaOH roasting and Al(NO<sub>3</sub>)<sub>3</sub> + AlCl<sub>3</sub> leaching were elucidated using XRD, SEM, ICP, XRF, and DFT calculations. Leaching kinetics of Au and Pt were also studied. Finally, Au and Pt were efficiently recovered from the leaching solution by lead powder replacement. This study provides a feasible and promising solution for the green and efficient recovery of valuable metals from ESSS.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"192 ","pages":"Pages 102-113"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X24006056","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electroplating sludge smelting soot (ESSS), contains high-grade value metals (such as Zn, Sn, Pb, precious metals Au and Pt) and large amounts of harmful elements Br and S, which could potentially cause valuable resources wastage and environmental pollution, therefore requires responsible recycling. An efficient and eco-friendly process for the cascade recovery of Zn, Sn, Pb, and precious metals Au and Pt from ESSS was proposed, combining NaOH roasting and acid-free aluminum salts leaching. Optimal NaOH roasting conditions achieved high extraction efficiencies for Zn, Sn, and Pb, which were then separated via water leaching. A novel Al(NO3)3 + AlCl3 leaching system was developed to recover Au and Pt from the enriched residue. By optimizing the NaOH roasting conditions and the Al(NO3)3 + AlCl3 leaching conditions, the decomposition and conversion of 99.91 % Zn, 99.56 % Sn, and 98.72 % Pb in ESSS were achieved, simultaneously accomplishing the leaching of 87.89 % Au and 100 % Pt. Mechanisms of NaOH roasting and Al(NO3)3 + AlCl3 leaching were elucidated using XRD, SEM, ICP, XRF, and DFT calculations. Leaching kinetics of Au and Pt were also studied. Finally, Au and Pt were efficiently recovered from the leaching solution by lead powder replacement. This study provides a feasible and promising solution for the green and efficient recovery of valuable metals from ESSS.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)