Research on the durability of composite epoxy resin modified repair mortars based on water-oil gradient phase change: From macroscopic to nanoscopic scales
Heping Zheng , Yuying Duan , Bo Pang , Meng Wang , Pan Wang , Dongshuai Hou
{"title":"Research on the durability of composite epoxy resin modified repair mortars based on water-oil gradient phase change: From macroscopic to nanoscopic scales","authors":"Heping Zheng , Yuying Duan , Bo Pang , Meng Wang , Pan Wang , Dongshuai Hou","doi":"10.1016/j.conbuildmat.2024.139325","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid pace of urbanization, global demand for concrete is increasing, shifting focus from construction to repair and maintenance. Traditional cement-based repair materials generally suffer from brittleness and poor durability, failing to meet the growing demand for durable repair solutions. We developed a water-oil gradient composite epoxy resin (CEP) modified cement-based repair mortar (MCEP) using self-synthesized water-based epoxy resin (WEP) and oil-based epoxy resin (EP). Durability tests showed that CEP-modified cement mortar exhibited improved resistance to solution penetration, shrinkage, acid corrosion, and freeze-thaw cycles, with increased CEP content positively affecting mortar durability. Notably, the addition of CEP not only enhanced the interface bonding strength between MCEP and old concrete but also maintained good bonding stability under moisture erosion. X-CT and SEM microstructural tests revealed that CEP is evenly distributed in the cement paste, forming a cement-polymer interpenetrating network structure, which improves crack resistance and reduces solution penetration in MCEP. Molecular dynamics simulations explored the adsorption of CEP on calcium aluminate hydrate (AFt), a key cement hydration product, and the moisture transport mechanisms in AFt and CEP-modified AFt nanopores. Results indicated that CEP molecules adsorb onto AFt via ionic and hydrogen bonds, demonstrating good stability. During moisture penetration, CEP reduced water transport efficiency in the nanopores. CEP modification improved the crack resistance and durability of cement repair mortars, providing valuable insights into molecular-scale enhancements in water permeability resistance. This study aims to contribute to the design and practical application of water-oil gradient epoxy resins and other polymer-modified cement-based repair materials.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"457 ","pages":"Article 139325"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824044672","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid pace of urbanization, global demand for concrete is increasing, shifting focus from construction to repair and maintenance. Traditional cement-based repair materials generally suffer from brittleness and poor durability, failing to meet the growing demand for durable repair solutions. We developed a water-oil gradient composite epoxy resin (CEP) modified cement-based repair mortar (MCEP) using self-synthesized water-based epoxy resin (WEP) and oil-based epoxy resin (EP). Durability tests showed that CEP-modified cement mortar exhibited improved resistance to solution penetration, shrinkage, acid corrosion, and freeze-thaw cycles, with increased CEP content positively affecting mortar durability. Notably, the addition of CEP not only enhanced the interface bonding strength between MCEP and old concrete but also maintained good bonding stability under moisture erosion. X-CT and SEM microstructural tests revealed that CEP is evenly distributed in the cement paste, forming a cement-polymer interpenetrating network structure, which improves crack resistance and reduces solution penetration in MCEP. Molecular dynamics simulations explored the adsorption of CEP on calcium aluminate hydrate (AFt), a key cement hydration product, and the moisture transport mechanisms in AFt and CEP-modified AFt nanopores. Results indicated that CEP molecules adsorb onto AFt via ionic and hydrogen bonds, demonstrating good stability. During moisture penetration, CEP reduced water transport efficiency in the nanopores. CEP modification improved the crack resistance and durability of cement repair mortars, providing valuable insights into molecular-scale enhancements in water permeability resistance. This study aims to contribute to the design and practical application of water-oil gradient epoxy resins and other polymer-modified cement-based repair materials.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.