Ana Sofia Lourenço , Tobias Schuster , João Almeida Lopes , Annette Kirsch
{"title":"A non-linear modelling approach to predict the dissolution profile of extended-release tablets","authors":"Ana Sofia Lourenço , Tobias Schuster , João Almeida Lopes , Annette Kirsch","doi":"10.1016/j.ejps.2024.106976","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel non-linear modelling approach to predict the dissolution profiles of extended-release tablets, by combining a full-factorial design, curve fitting to the dissolution profiles, and artificial neural networks (ANN), with linear regression methods, partial least squares (PLS) and multiple linear regression (MLR) as benchmarks.</div><div>Hydroxypropylmethylcellulose (HPMC) and carboxymethylcellulose (CMC) grades, active pharmaceutical ingredient (API) lubrication, and compression force were chosen as DoE factors. The resulting batches were tested to obtain their corresponding dissolution profile, and a first-order dissolution equation was fitted to each profile. ANN, PLS and MLR were used to model and predict the tablet-specific constant <em>k</em> which then served to simulate dissolution profiles.</div><div>This study demonstrates how non-linear methods, specifically ANN, outperform traditional linear models in predicting the complex interactions affecting drug release from extended-release formulations.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"204 ","pages":"Article 106976"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098724002896","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel non-linear modelling approach to predict the dissolution profiles of extended-release tablets, by combining a full-factorial design, curve fitting to the dissolution profiles, and artificial neural networks (ANN), with linear regression methods, partial least squares (PLS) and multiple linear regression (MLR) as benchmarks.
Hydroxypropylmethylcellulose (HPMC) and carboxymethylcellulose (CMC) grades, active pharmaceutical ingredient (API) lubrication, and compression force were chosen as DoE factors. The resulting batches were tested to obtain their corresponding dissolution profile, and a first-order dissolution equation was fitted to each profile. ANN, PLS and MLR were used to model and predict the tablet-specific constant k which then served to simulate dissolution profiles.
This study demonstrates how non-linear methods, specifically ANN, outperform traditional linear models in predicting the complex interactions affecting drug release from extended-release formulations.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.