Lei Gao , David Paré , Flavia Lega Braghiroli , Mathieu Lamarche , Yves Bergeron
{"title":"Relationships between charcoal property and post fire productivity in the boreal forest","authors":"Lei Gao , David Paré , Flavia Lega Braghiroli , Mathieu Lamarche , Yves Bergeron","doi":"10.1016/j.fecs.2024.100277","DOIUrl":null,"url":null,"abstract":"<div><div>Fire disturbances are increasing under global climate change and ecological transformations of forests are occurring. Specifically, shifts from productive closed-canopy feather moss forests to low-productivity open-canopy lichen (<em>Cladonia</em> spp.) woodlands have been observed in boreal forests of eastern Canada. It has been hypothesized that high severity of fires would be the cause of this change, but this is difficult to validate <em>a posteriori</em> on mature forest stands. Because charcoal properties are affected by fire severity, we have put forward the hypothesis that the amount and physicochemical properties of charcoal (C, N, H, O, ash, surface area) would be different and indicative of a greater fire severity for open-canopy forests compared to closed canopy ones. Our hypothesis was partly validated in that the amount of charcoal found on the ground of closed-canopy forests was greater than that of open-canopy forests. However, the physicochemical properties were not different, albeit a greater variability of charcoal properties for open canopy stands. These results do not allow us to fully validate or reject our hypothesis on the role of fire severity in the shift between open and closed canopy stands. However, they suggest that the variability in fire conditions as well as the amounts of charcoal produced are different between the two ecosystem types. Furthermore, considering the role that biochar may play in improving soil conditions and promoting vegetation restoration, our results suggest that charcoal may play a role in maintaining these two stable alternative ecosystem states.</div></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":"12 ","pages":"Article 100277"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024001131","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Fire disturbances are increasing under global climate change and ecological transformations of forests are occurring. Specifically, shifts from productive closed-canopy feather moss forests to low-productivity open-canopy lichen (Cladonia spp.) woodlands have been observed in boreal forests of eastern Canada. It has been hypothesized that high severity of fires would be the cause of this change, but this is difficult to validate a posteriori on mature forest stands. Because charcoal properties are affected by fire severity, we have put forward the hypothesis that the amount and physicochemical properties of charcoal (C, N, H, O, ash, surface area) would be different and indicative of a greater fire severity for open-canopy forests compared to closed canopy ones. Our hypothesis was partly validated in that the amount of charcoal found on the ground of closed-canopy forests was greater than that of open-canopy forests. However, the physicochemical properties were not different, albeit a greater variability of charcoal properties for open canopy stands. These results do not allow us to fully validate or reject our hypothesis on the role of fire severity in the shift between open and closed canopy stands. However, they suggest that the variability in fire conditions as well as the amounts of charcoal produced are different between the two ecosystem types. Furthermore, considering the role that biochar may play in improving soil conditions and promoting vegetation restoration, our results suggest that charcoal may play a role in maintaining these two stable alternative ecosystem states.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.