Exploring the potential of heterocyclic carbazole-derived dyes for DSSCs

IF 4.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Photochemistry and Photobiology A-chemistry Pub Date : 2024-11-26 DOI:10.1016/j.jphotochem.2024.116177
Nainamalai Devarajan , Praveen Naik , Demudu Babu Gorle
{"title":"Exploring the potential of heterocyclic carbazole-derived dyes for DSSCs","authors":"Nainamalai Devarajan ,&nbsp;Praveen Naik ,&nbsp;Demudu Babu Gorle","doi":"10.1016/j.jphotochem.2024.116177","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the design and synthesis of two novel donor–acceptor (D–A) type heterocyclic carbazole-derived organic dyes, CzP-BA and CzP-TBA, incorporating 9-(p-tolyl)-9H-carbazole as the electron donor and barbituric acid or thiobarbituric acid as electron acceptors. These dyes were developed with a strategic molecular framework to support optoelectronic applications, especially in dye-sensitized solar cells (DSSCs). Comprehensive characterization of their optical, thermal, and theoretical properties was conducted to understand their suitability in optoelectronic applications. The linkage of carbazole to barbituric acid or thiobarbituric acid enhances light absorption, as indicated by absorption peaks at 447 nm for CzP-BA and 474 nm for CzP-TBA. Electrochemical studies reveal that both dyes possess the necessary thermodynamic driving forces to function effectively as photosensitizers in DSSCs. Furthermore, DFT and MESP calculations provide insight into their electronic structures, highlighting their potential as effective photosensitizers. Together, these results showcase CzP-BA and CzP-TBA as promising candidates for practical use in optoelectronic systems.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"462 ","pages":"Article 116177"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024007214","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the design and synthesis of two novel donor–acceptor (D–A) type heterocyclic carbazole-derived organic dyes, CzP-BA and CzP-TBA, incorporating 9-(p-tolyl)-9H-carbazole as the electron donor and barbituric acid or thiobarbituric acid as electron acceptors. These dyes were developed with a strategic molecular framework to support optoelectronic applications, especially in dye-sensitized solar cells (DSSCs). Comprehensive characterization of their optical, thermal, and theoretical properties was conducted to understand their suitability in optoelectronic applications. The linkage of carbazole to barbituric acid or thiobarbituric acid enhances light absorption, as indicated by absorption peaks at 447 nm for CzP-BA and 474 nm for CzP-TBA. Electrochemical studies reveal that both dyes possess the necessary thermodynamic driving forces to function effectively as photosensitizers in DSSCs. Furthermore, DFT and MESP calculations provide insight into their electronic structures, highlighting their potential as effective photosensitizers. Together, these results showcase CzP-BA and CzP-TBA as promising candidates for practical use in optoelectronic systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
580
审稿时长
48 days
期刊介绍: JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds. All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor). The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.
期刊最新文献
Photo-controlled fluorescent switches based on Si@ZnO quantum dots and diarylethenes for bioimaging and anti-counterfeiting Exploring the potential of heterocyclic carbazole-derived dyes for DSSCs Novel ACr2O4 (A = Mg, Cu, Ni)/MIL-101(Cr) photocatalysts: Synthesis, characterization, performance prediction and applications for the photo–degradation of tetracycline hydrochloride The influence of microbial sources on astaxanthin implementation as sensitizer in dye sensitized solar cells (DSSCs) Thinned g-C3N4 nanosheets with microdopants of cucurbit[7]uril to improve photoelectrochemical water-splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1