{"title":"Exploring the potential of heterocyclic carbazole-derived dyes for DSSCs","authors":"Nainamalai Devarajan , Praveen Naik , Demudu Babu Gorle","doi":"10.1016/j.jphotochem.2024.116177","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the design and synthesis of two novel donor–acceptor (D–A) type heterocyclic carbazole-derived organic dyes, CzP-BA and CzP-TBA, incorporating 9-(p-tolyl)-9H-carbazole as the electron donor and barbituric acid or thiobarbituric acid as electron acceptors. These dyes were developed with a strategic molecular framework to support optoelectronic applications, especially in dye-sensitized solar cells (DSSCs). Comprehensive characterization of their optical, thermal, and theoretical properties was conducted to understand their suitability in optoelectronic applications. The linkage of carbazole to barbituric acid or thiobarbituric acid enhances light absorption, as indicated by absorption peaks at 447 nm for CzP-BA and 474 nm for CzP-TBA. Electrochemical studies reveal that both dyes possess the necessary thermodynamic driving forces to function effectively as photosensitizers in DSSCs. Furthermore, DFT and MESP calculations provide insight into their electronic structures, highlighting their potential as effective photosensitizers. Together, these results showcase CzP-BA and CzP-TBA as promising candidates for practical use in optoelectronic systems.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"462 ","pages":"Article 116177"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024007214","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the design and synthesis of two novel donor–acceptor (D–A) type heterocyclic carbazole-derived organic dyes, CzP-BA and CzP-TBA, incorporating 9-(p-tolyl)-9H-carbazole as the electron donor and barbituric acid or thiobarbituric acid as electron acceptors. These dyes were developed with a strategic molecular framework to support optoelectronic applications, especially in dye-sensitized solar cells (DSSCs). Comprehensive characterization of their optical, thermal, and theoretical properties was conducted to understand their suitability in optoelectronic applications. The linkage of carbazole to barbituric acid or thiobarbituric acid enhances light absorption, as indicated by absorption peaks at 447 nm for CzP-BA and 474 nm for CzP-TBA. Electrochemical studies reveal that both dyes possess the necessary thermodynamic driving forces to function effectively as photosensitizers in DSSCs. Furthermore, DFT and MESP calculations provide insight into their electronic structures, highlighting their potential as effective photosensitizers. Together, these results showcase CzP-BA and CzP-TBA as promising candidates for practical use in optoelectronic systems.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.