Enhanced integrated acoustofluidics with printed circuit board electrodes attached to piezoelectric film coated substrate

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Ultrasonics Pub Date : 2024-11-26 DOI:10.1016/j.ultras.2024.107531
Chao Sun , Roman Mikhaylov , Xiaoye Yang , Xiaoyan Zhang , Kungui Feng , Tengfei Zheng , Yong-Qing Fu , Xin Yang
{"title":"Enhanced integrated acoustofluidics with printed circuit board electrodes attached to piezoelectric film coated substrate","authors":"Chao Sun ,&nbsp;Roman Mikhaylov ,&nbsp;Xiaoye Yang ,&nbsp;Xiaoyan Zhang ,&nbsp;Kungui Feng ,&nbsp;Tengfei Zheng ,&nbsp;Yong-Qing Fu ,&nbsp;Xin Yang","doi":"10.1016/j.ultras.2024.107531","DOIUrl":null,"url":null,"abstract":"<div><div>The current key issues in applying acoustofluidics in engineering lie in the inflexibility of manufacturing processes, particularly those involving modifications to piezoelectric materials and devices. This leads to inefficient prototyping and potentially high costs. To overcome these limitations, we proposed a technique that is capable of prototyping acoustofluidic devices in a straightforward manner. This is achieved by simply clamping a printed circuit board (PCB) featuring interdigital electrodes (IDEs) onto a substrate coated with a piezoelectric thin film. By applying appropriate clamping force between the PCB and the substrate, one can effectively generate surface acoustic waves (SAWs) along the surface of the substrate. This approach simplifies the prototyping process, reducing the complexity and fabrication time. The clamping mechanism allows for easy adjustment and optimization of the SAW generation, enabling fine-tuning of the fluid and particle manipulation capabilities. Furthermore, this method allows for customizable interdigital transducers (IDTs) by ‘patterning’ IDEs on thin-film piezoelectric substrates (such as ZnO/Al and ZnO/Si) with various anisotropy orientations. This facilitates the on-demand generation of wave modes, including A0 and S0 Lamb waves, Rayleigh waves, and Sezawa waves. One notable advantage of this method is its capability to rapidly test acoustic wave patterns and performance on any substrate, offering a fast and streamlined approach to assess acoustic behaviors across diverse materials, thereby paving the way for efficient exploration of novel materials in SAW technology.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"147 ","pages":"Article 107531"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002944","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The current key issues in applying acoustofluidics in engineering lie in the inflexibility of manufacturing processes, particularly those involving modifications to piezoelectric materials and devices. This leads to inefficient prototyping and potentially high costs. To overcome these limitations, we proposed a technique that is capable of prototyping acoustofluidic devices in a straightforward manner. This is achieved by simply clamping a printed circuit board (PCB) featuring interdigital electrodes (IDEs) onto a substrate coated with a piezoelectric thin film. By applying appropriate clamping force between the PCB and the substrate, one can effectively generate surface acoustic waves (SAWs) along the surface of the substrate. This approach simplifies the prototyping process, reducing the complexity and fabrication time. The clamping mechanism allows for easy adjustment and optimization of the SAW generation, enabling fine-tuning of the fluid and particle manipulation capabilities. Furthermore, this method allows for customizable interdigital transducers (IDTs) by ‘patterning’ IDEs on thin-film piezoelectric substrates (such as ZnO/Al and ZnO/Si) with various anisotropy orientations. This facilitates the on-demand generation of wave modes, including A0 and S0 Lamb waves, Rayleigh waves, and Sezawa waves. One notable advantage of this method is its capability to rapidly test acoustic wave patterns and performance on any substrate, offering a fast and streamlined approach to assess acoustic behaviors across diverse materials, thereby paving the way for efficient exploration of novel materials in SAW technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印刷电路板电极附着在压电薄膜涂层基板上的增强集成声流
目前在工程中应用声流体学的关键问题在于制造过程的不灵活性,特别是那些涉及到压电材料和器件的修改。这将导致低效的原型和潜在的高成本。为了克服这些限制,我们提出了一种能够以直接的方式制作声流体装置原型的技术。这是通过简单地将具有数字间电极(ide)的印刷电路板(PCB)夹在涂有压电薄膜的基板上实现的。通过在PCB和基板之间施加适当的夹紧力,可以沿基板表面有效地产生表面声波(saw)。这种方法简化了原型制作过程,减少了复杂性和制造时间。夹紧机构可以轻松调整和优化SAW生成,实现流体和颗粒操作能力的微调。此外,该方法允许通过在具有各种各向异性取向的薄膜压电衬底(如ZnO/Al和ZnO/Si)上“图像化”ide来定制数字间换能器(idt)。这有助于按需生成波型,包括A0和S0 Lamb波、Rayleigh波和Sezawa波。这种方法的一个显著优点是它能够快速测试任何基板上的声波模式和性能,提供了一种快速和简化的方法来评估不同材料的声学行为,从而为SAW技术中新材料的有效探索铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
期刊最新文献
Dual-frequency excitation in high-frame-rate ultrasonic backscatter coefficient analysis of hemorheological properties Physics-based generative adversarial network for real-time acoustic holography A miniature FUS transducer based on an acoustic Fresnel lens for integration with a surgical robot Plane wave compounding with adaptive joint coherence factor weighting Precision of in vivo pressure gradient estimations using synthetic aperture ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1