Versatile inulin/trans-ferulic acid/silk sericin nanoparticles-nourished probiotic complex with prolonged intestinal retention for synergistic therapy of inflammatory bowel disease

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED Carbohydrate Polymers Pub Date : 2024-11-26 DOI:10.1016/j.carbpol.2024.123063
Yujie Zhang , Xiaojiang Zhang , Lianxi Lv , Sheng Gao , Xiang Li , Ruochen Wang , Pengqian Wang , Feiyu Shi , Junjun She , Ya Wang
{"title":"Versatile inulin/trans-ferulic acid/silk sericin nanoparticles-nourished probiotic complex with prolonged intestinal retention for synergistic therapy of inflammatory bowel disease","authors":"Yujie Zhang ,&nbsp;Xiaojiang Zhang ,&nbsp;Lianxi Lv ,&nbsp;Sheng Gao ,&nbsp;Xiang Li ,&nbsp;Ruochen Wang ,&nbsp;Pengqian Wang ,&nbsp;Feiyu Shi ,&nbsp;Junjun She ,&nbsp;Ya Wang","doi":"10.1016/j.carbpol.2024.123063","DOIUrl":null,"url":null,"abstract":"<div><div>To achieve effective long-term synergistic treatment of inflammatory bowel disease (IBD) with probiotics, we developed a versatile inulin/trans-ferulic acid/silk sericin nanoparticles-nourished probiotic complex. Inulin/TFA/SS nanoparticles were fabricated by inulin, trans-ferulic acid (TFA), and silk sericin (SS), and then loaded onto the surface of poly-<span>l</span>-lysine (PLL) and poly-glutamic acid (PGA)-coated <em>Bifidobacterium longum</em> (BL) to obtain BL@PLL-PGA-Inulin/TFA/SS NPs (BL@PP-NPs). This design simultaneously endowed the complex with excellent gastrointestinal resistance, antioxidant, and anti-inflammation abilities. Moreover, the inulin in the nanoparticles acts as a prebiotic, promoting the <em>Bifidobacterium's</em> rapid proliferation to exert effects within a short period. Compared with uncoated BL, BL@PP-NPs exhibited excellent gastric acid tolerance and up to 31.32-fold colonic colonization, and the ROS scavenging and proliferative capacity were increased by 5.61- and 1.39-fold, respectively. In a mouse model of dextran sulfate sodium (DSS)- and trinitrobenzene sulfonic acid (TNBS)-induced colitis, the components of Inulin/TFA/SS NPs synergized with probiotics to efficiently treat IBD by attenuating oxidative stress, decreasing inflammation, repairing intestinal barrier, and promoting the rapid proliferation of probiotics to reverse gut microbial disorders. Collectively, food-grade BL@PP-NPs represent a novel approach to probiotic modification that offers an effective, safe, and synergistic therapy for IBD.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"350 ","pages":"Article 123063"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014486172401289X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve effective long-term synergistic treatment of inflammatory bowel disease (IBD) with probiotics, we developed a versatile inulin/trans-ferulic acid/silk sericin nanoparticles-nourished probiotic complex. Inulin/TFA/SS nanoparticles were fabricated by inulin, trans-ferulic acid (TFA), and silk sericin (SS), and then loaded onto the surface of poly-l-lysine (PLL) and poly-glutamic acid (PGA)-coated Bifidobacterium longum (BL) to obtain BL@PLL-PGA-Inulin/TFA/SS NPs (BL@PP-NPs). This design simultaneously endowed the complex with excellent gastrointestinal resistance, antioxidant, and anti-inflammation abilities. Moreover, the inulin in the nanoparticles acts as a prebiotic, promoting the Bifidobacterium's rapid proliferation to exert effects within a short period. Compared with uncoated BL, BL@PP-NPs exhibited excellent gastric acid tolerance and up to 31.32-fold colonic colonization, and the ROS scavenging and proliferative capacity were increased by 5.61- and 1.39-fold, respectively. In a mouse model of dextran sulfate sodium (DSS)- and trinitrobenzene sulfonic acid (TNBS)-induced colitis, the components of Inulin/TFA/SS NPs synergized with probiotics to efficiently treat IBD by attenuating oxidative stress, decreasing inflammation, repairing intestinal barrier, and promoting the rapid proliferation of probiotics to reverse gut microbial disorders. Collectively, food-grade BL@PP-NPs represent a novel approach to probiotic modification that offers an effective, safe, and synergistic therapy for IBD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
期刊最新文献
Fe, N-CQDs triggered the fabrication of alginate encapsulated g-C3N4 hydrogel for efficient photocatalytic activation of PMS and antibiotic degradation Biocompatible dually reinforced gellan gum hydrogels with selective antibacterial activity The structural discrepancy between the ability of fructan and arabinogalactan to cure acute pharyngitis in Hosta plantaginea (Lam.) Aschers flowers Astragalus polysaccharide/carboxymethyl chitosan/sodium alginate based electroconductive hydrogels for diabetic wound healing and muscle function assessment Versatile inulin/trans-ferulic acid/silk sericin nanoparticles-nourished probiotic complex with prolonged intestinal retention for synergistic therapy of inflammatory bowel disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1