Energy and CO2 fluxes in the early stage development of reclaimed and unreclaimed post-mining areas

IF 5.4 Q1 ENVIRONMENTAL SCIENCES Environmental and Sustainability Indicators Pub Date : 2024-11-28 DOI:10.1016/j.indic.2024.100547
Aysan Badraghi , Ondřej Mudrák , Jiří Kučera , Leonardo Montagnani , Jan Frouz
{"title":"Energy and CO2 fluxes in the early stage development of reclaimed and unreclaimed post-mining areas","authors":"Aysan Badraghi ,&nbsp;Ondřej Mudrák ,&nbsp;Jiří Kučera ,&nbsp;Leonardo Montagnani ,&nbsp;Jan Frouz","doi":"10.1016/j.indic.2024.100547","DOIUrl":null,"url":null,"abstract":"<div><div>The carbon exchange in post-mining areas and the impact of various restoration practices—(i) reclaimed (alder plantation on leveled microtopography in 2019) and (ii) unreclaimed (spontaneous development on wave-like microtopography)— on carbon and energy fluxes remains poorly understood. To address this gap, we conducted the first direct measurements of net ecosystem exchange (NEE), latent heat (LE), and sensible heat (H) using paired eddy covariance towers at both reclaimed and unreclaimed sites during the growing seasons of 2020, 2021, and 2023 in the early stage of succession in Czechia. Our novel results show that early post-coal mining sites were net sources of CO<sub>2</sub> but became carbon sinks on a monthly scale within four years, highlighting the rapid ecosystem recovery at both sites. Significant differences in NEE, gross primary production (GPP), ecosystem respiration (Reco), and LE were observed between the two sites. Initially (2020 and 2021), the effect of alder seedlings was negligible. Differences in NEE and LE were mainly caused by higher emissions (Reco) at the unreclaimed site due to lower soil bulk density and higher runoff at the reclaimed site due to compacted soil, both influenced by heavy summer rainfall. By 2023, alder growth (GPP) became the primary factor differentiating the two sites. Climatic variables influenced fluxes similarly at both sites, although correlations were stronger at the unreclaimed site. Our findings suggest that natural succession can lead to CO<sub>2</sub> sinks comparable to alder plantations, offering a practical alternative for post-mining land restoration in Central Europe.</div></div>","PeriodicalId":36171,"journal":{"name":"Environmental and Sustainability Indicators","volume":"25 ","pages":"Article 100547"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Sustainability Indicators","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665972724002150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The carbon exchange in post-mining areas and the impact of various restoration practices—(i) reclaimed (alder plantation on leveled microtopography in 2019) and (ii) unreclaimed (spontaneous development on wave-like microtopography)— on carbon and energy fluxes remains poorly understood. To address this gap, we conducted the first direct measurements of net ecosystem exchange (NEE), latent heat (LE), and sensible heat (H) using paired eddy covariance towers at both reclaimed and unreclaimed sites during the growing seasons of 2020, 2021, and 2023 in the early stage of succession in Czechia. Our novel results show that early post-coal mining sites were net sources of CO2 but became carbon sinks on a monthly scale within four years, highlighting the rapid ecosystem recovery at both sites. Significant differences in NEE, gross primary production (GPP), ecosystem respiration (Reco), and LE were observed between the two sites. Initially (2020 and 2021), the effect of alder seedlings was negligible. Differences in NEE and LE were mainly caused by higher emissions (Reco) at the unreclaimed site due to lower soil bulk density and higher runoff at the reclaimed site due to compacted soil, both influenced by heavy summer rainfall. By 2023, alder growth (GPP) became the primary factor differentiating the two sites. Climatic variables influenced fluxes similarly at both sites, although correlations were stronger at the unreclaimed site. Our findings suggest that natural succession can lead to CO2 sinks comparable to alder plantations, offering a practical alternative for post-mining land restoration in Central Europe.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental and Sustainability Indicators
Environmental and Sustainability Indicators Environmental Science-Environmental Science (miscellaneous)
CiteScore
7.80
自引率
2.30%
发文量
49
审稿时长
57 days
期刊最新文献
Association between exposure to urban neighborhood natural environments and human health: A systematic review of multiple exposure indicators Energy and CO2 fluxes in the early stage development of reclaimed and unreclaimed post-mining areas Smallholder farmers' perceptions of climate variability and its risks across agroecological zones in the Ayehu watershed, Upper Blue Nile Basin, Ethiopia An in-depth multiscale analysis of farmland abandonment and recultivation dynamics in the Yangtze River Delta, China: A landscape ecology perspective empowered by google earth engine Security vs efficiency of the water-energy-food nexus. A study of the economies of the regions of Spain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1