Segmentation of MRI tumors and pelvic anatomy via cGAN-synthesized data and attention-enhanced U-Net

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-11-24 DOI:10.1016/j.patrec.2024.11.003
Mudassar Ali , Haoji Hu , Tong Wu , Maryam Mansoor , Qiong Luo , Weizeng Zheng , Neng Jin
{"title":"Segmentation of MRI tumors and pelvic anatomy via cGAN-synthesized data and attention-enhanced U-Net","authors":"Mudassar Ali ,&nbsp;Haoji Hu ,&nbsp;Tong Wu ,&nbsp;Maryam Mansoor ,&nbsp;Qiong Luo ,&nbsp;Weizeng Zheng ,&nbsp;Neng Jin","doi":"10.1016/j.patrec.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate tumor segmentation within MRI images is of great importance for both diagnosis and treatment; however, in many cases, sufficient annotated datasets may not be available. This paper develops a novel approach to the medical image segmentation of tumors in the brain, liver, and pelvic regions within MRI images, by combining an attention-enhanced U-Net model with a cGAN. We introduce three key novelties: a patch discriminator in the cGAN to enhance realism of generated images, attention mechanisms in the U-Net to enhance the accuracy of segmentation, and finally an application to pelvic MRI segmentation, which has seen little exploration. Our method addresses the issue of limited availability of annotated data by generating realistic synthetic images to augment the process of training. Our experimental results on brain, liver, and pelvic MRI datasets show that our approach outperforms the state-of-the-art methods with a Dice Coefficient of 98.61 % for brain MRI, 88.60 % for liver MRI, and 91.93 % for pelvic MRI. We can also observe great increases in the Hausdorff Distance, at especially complex anatomical regions such as tumor boundaries. The proposed combination of synthetic data creation and novel segmentation techniques opens new perspectives for robust medical image segmentation.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"187 ","pages":"Pages 100-106"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016786552400309X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate tumor segmentation within MRI images is of great importance for both diagnosis and treatment; however, in many cases, sufficient annotated datasets may not be available. This paper develops a novel approach to the medical image segmentation of tumors in the brain, liver, and pelvic regions within MRI images, by combining an attention-enhanced U-Net model with a cGAN. We introduce three key novelties: a patch discriminator in the cGAN to enhance realism of generated images, attention mechanisms in the U-Net to enhance the accuracy of segmentation, and finally an application to pelvic MRI segmentation, which has seen little exploration. Our method addresses the issue of limited availability of annotated data by generating realistic synthetic images to augment the process of training. Our experimental results on brain, liver, and pelvic MRI datasets show that our approach outperforms the state-of-the-art methods with a Dice Coefficient of 98.61 % for brain MRI, 88.60 % for liver MRI, and 91.93 % for pelvic MRI. We can also observe great increases in the Hausdorff Distance, at especially complex anatomical regions such as tumor boundaries. The proposed combination of synthetic data creation and novel segmentation techniques opens new perspectives for robust medical image segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Bilateral symmetry-based augmentation method for improved tooth segmentation in panoramic X-rays GAF-Net: A new automated segmentation method based on multiscale feature fusion and feedback module Segmentation of MRI tumors and pelvic anatomy via cGAN-synthesized data and attention-enhanced U-Net Multichannel image classification based on adaptive attribute profiles Incremental component tree contour computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1