An efficient solution for GPUs to the ST-connectivity problem on dynamic graphs

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2025-03-15 DOI:10.1016/j.patrec.2025.02.034
Leonardo Fraccaroli , Federico Busato , Rosalba Giugno , Nicola Bombieri
{"title":"An efficient solution for GPUs to the ST-connectivity problem on dynamic graphs","authors":"Leonardo Fraccaroli ,&nbsp;Federico Busato ,&nbsp;Rosalba Giugno ,&nbsp;Nicola Bombieri","doi":"10.1016/j.patrec.2025.02.034","DOIUrl":null,"url":null,"abstract":"<div><div>ST-connectivity poses a decision problem, determining whether, for vertices <span><math><mi>s</mi></math></span> and <span><math><mi>t</mi></math></span> within a graph, <span><math><mi>t</mi></math></span> is reachable from <span><math><mi>s</mi></math></span>. The challenge arises in the context of dynamic real-world graphs that undergo rapid evolution over time. In these scenarios, repeatedly solving the s-t connectivity problem from the beginning after each graph modification becomes impractical. Although parallel solutions, especially designed for GPUs, have been introduced to tackle the size complexity of static graphs, none have specifically addressed the concern of work efficiency in dynamic graphs. We propose an efficient solution for GPUs to the st-connectivity problem that can handle concurrent processing of batches of graph updates. We use batch information strategically to reduce the overall workload needed for updating the connectivity result. We provide experimental results based on standard datasets and with graphs of different characteristics and batch sizes to evaluate the proposed solutions efficiency.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"191 ","pages":"Pages 110-116"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525000844","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

ST-connectivity poses a decision problem, determining whether, for vertices s and t within a graph, t is reachable from s. The challenge arises in the context of dynamic real-world graphs that undergo rapid evolution over time. In these scenarios, repeatedly solving the s-t connectivity problem from the beginning after each graph modification becomes impractical. Although parallel solutions, especially designed for GPUs, have been introduced to tackle the size complexity of static graphs, none have specifically addressed the concern of work efficiency in dynamic graphs. We propose an efficient solution for GPUs to the st-connectivity problem that can handle concurrent processing of batches of graph updates. We use batch information strategically to reduce the overall workload needed for updating the connectivity result. We provide experimental results based on standard datasets and with graphs of different characteristics and batch sizes to evaluate the proposed solutions efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ST 连接性提出了一个决策问题,即确定对于图中的顶点 s 和 t,t 是否可以从 s 到达。这一挑战是在动态真实世界图的背景下出现的,因为图会随着时间的推移而快速演变。在这种情况下,每次图形修改后都要从头开始重复求解 s-t 连接性问题变得不切实际。尽管针对 GPU 设计的并行解决方案已经问世,以解决静态图的大小复杂性问题,但没有一个解决方案能专门解决动态图的工作效率问题。我们针对st-连接性问题提出了一种高效的 GPU 解决方案,它可以处理图更新批次的并发处理。我们战略性地使用批次信息来减少更新连通性结果所需的总体工作量。我们提供了基于标准数据集的实验结果,并使用不同特性和批量大小的图来评估所提出的解决方案的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
An efficient solution for GPUs to the ST-connectivity problem on dynamic graphs SR-LBSCC: Super resolution based screen content image compression at low bitrate MSNet: Multi-task self-supervised network for time series classification Information theoretic clustering of the human pangenome minigraph Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1