{"title":"Experimental seismic behavior of novel inorganic-bonded bamboo composite beam-to-column moment-resisting connections","authors":"Xin Zhang , Shurong Li , Yang Song , Shuming Li","doi":"10.1016/j.soildyn.2024.109113","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an innovative method of gluing the slot and the bolt holes was proposed to enhance the seismic performance of the inorganic-bonded bamboo beam-to-column connections. Four different types of inorganic-bonded bamboo composite beam-to-column connections were designed. They included the conventional bolted connection with slotted-in L-shaped steel plates, the bolted connection with slotted-in L-shaped steel plates (the slots and the bolt holes are glued), the bolted connection with slotted-in T-shaped steel plates and bolt anchorage in column (the slots and the bolt holes are glued), and the bolted connection with slotted-in T-shaped steel plates and glued-in rods in column (the slots and the bolt holes are glued). Monotonic and cyclic loading tests were conducted to evaluate the seismic behavior of the novel inorganic-bonded bamboo beam-to-column connections. The test results showed that the bearing capacity of the connections whose holes and slots are filled with glue increased by 40%–120 %, compared with the conventional bolted connection. The initial stiffness of the glued connections was about 5–15 times that of the conventional connection. The ductility and energy dissipation capacity of the conventional bolted connection with slotted-in steel plates was lower than that of the glued connections. Under the joint action of the adhesive in bolt holes and slots, the steel plate and the bamboo composite worked together as a whole until adhesive failure occurred. Therefore, gluing the slot and the bolt holes was an effective method for improving the seismic performance of the inorganic-bonded bamboo composite connections. The bolted and glued connection with slotted-in T-shaped steel plates in the beam and glued-in rods in the column showed a better seismic performance and was found to be suitable for practical engineering after taking some measures on the end anchorage. In addition, it was conservative to estimate the bearing capacity of the bolted connection with glue-filled holes and slots according to Eurocode 5.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"189 ","pages":"Article 109113"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124006651","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an innovative method of gluing the slot and the bolt holes was proposed to enhance the seismic performance of the inorganic-bonded bamboo beam-to-column connections. Four different types of inorganic-bonded bamboo composite beam-to-column connections were designed. They included the conventional bolted connection with slotted-in L-shaped steel plates, the bolted connection with slotted-in L-shaped steel plates (the slots and the bolt holes are glued), the bolted connection with slotted-in T-shaped steel plates and bolt anchorage in column (the slots and the bolt holes are glued), and the bolted connection with slotted-in T-shaped steel plates and glued-in rods in column (the slots and the bolt holes are glued). Monotonic and cyclic loading tests were conducted to evaluate the seismic behavior of the novel inorganic-bonded bamboo beam-to-column connections. The test results showed that the bearing capacity of the connections whose holes and slots are filled with glue increased by 40%–120 %, compared with the conventional bolted connection. The initial stiffness of the glued connections was about 5–15 times that of the conventional connection. The ductility and energy dissipation capacity of the conventional bolted connection with slotted-in steel plates was lower than that of the glued connections. Under the joint action of the adhesive in bolt holes and slots, the steel plate and the bamboo composite worked together as a whole until adhesive failure occurred. Therefore, gluing the slot and the bolt holes was an effective method for improving the seismic performance of the inorganic-bonded bamboo composite connections. The bolted and glued connection with slotted-in T-shaped steel plates in the beam and glued-in rods in the column showed a better seismic performance and was found to be suitable for practical engineering after taking some measures on the end anchorage. In addition, it was conservative to estimate the bearing capacity of the bolted connection with glue-filled holes and slots according to Eurocode 5.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.