Soil organic and inorganic carbon interactions under tillage and cover cropping determine potential for carbon accumulation in temperate, calcareous soils

IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Soil & Tillage Research Pub Date : 2024-11-29 DOI:10.1016/j.still.2024.106369
K.R. Ball , Y. Guo , P.D. Hallett , P. Smith , H. Moreno-Ramón , N.L. Morris , A.A. Malik
{"title":"Soil organic and inorganic carbon interactions under tillage and cover cropping determine potential for carbon accumulation in temperate, calcareous soils","authors":"K.R. Ball ,&nbsp;Y. Guo ,&nbsp;P.D. Hallett ,&nbsp;P. Smith ,&nbsp;H. Moreno-Ramón ,&nbsp;N.L. Morris ,&nbsp;A.A. Malik","doi":"10.1016/j.still.2024.106369","DOIUrl":null,"url":null,"abstract":"<div><div>The global soil carbon pool comprises soil organic carbon (SOC), found in almost all soils, and soil inorganic carbon (SIC), in calcareous soils. Despite their agricultural significance, calcareous soils, which exhibit diverse chemical properties and are found in varied environments, have historically been understudied. Using soils obtained from a decade-long, fully factorial field experiment located on temperate, near neutral pH, calcareous soils, this study examined the influence of cover crops (no-cover <em>vs</em> radish) and three levels of tillage intensity: shallow (10 cm) and deep (20 cm) non-inversion, and plough (25 cm inversion) on SOC and SIC stocks. Further, considering recent experimental and observational evidence indicating the interactions of SOC and SIC pools and their likely microbial control, we also investigated how SOC, the soil microbial biomass pool, and SIC are correlated. For SOC stock, there were significant interactions with total SIC and SOC:SIC ratio that differed by tillage intensity. Across the whole soil profile (0–60 cm), there was a significantly positive relationship between SOC content and SIC stock that was only present with ploughing. Further, at low SOC:SIC ratios (∼0.5–3.0), while SOC stock was marginally lower under plough, at higher SOC:SIC ratios (∼3.1–10.0), SOC stock was predicted to be up to ∼4–fold greater (4 kg m<sup>−2</sup>) with ploughing than the lower intensity tillage treatments. This result highlights a critical SOC-SIC interaction that, depending on tillage intensity, may offset anticipated disturbance-related loss of SOC, and challenges the common perception that tillage consistently reduces SOC. SOC stock was also ∼40 % (0.42 kg m<sup>−2</sup>) greater at 0–10 cm and ∼30 % (0.2 kg m<sup>−2</sup>) greater at 30–40 cm under radish cover crop than without. SIC stock differences were correlated with SOC content, tillage intensity and cover cropping. SIC stock was strongly correlated with SOC, with a predicted ∼0.3–1 kg m<sup>−2</sup> increase in SIC stock for ∼1 % increase in SOC. Under radish cover crops and with ploughing, there was ∼0.7 kg m<sup>−2</sup> more SIC than under all other conditions. Microbial biomass was positively correlated with SIC stock suggesting a causality that needs experimental testing. Given that reduced tillage is a frequently recommended practice to increase soil carbon storage and given the limited attention that has been paid to the influence of cover cropping on the SIC pool, our results indicate the need for further investigation around the dynamics of SOC and SIC interactions and stabilization processes in calcareous soils and highlights the pitfalls of a one-size-fits-all approach to soil carbon management.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"247 ","pages":"Article 106369"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003702","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The global soil carbon pool comprises soil organic carbon (SOC), found in almost all soils, and soil inorganic carbon (SIC), in calcareous soils. Despite their agricultural significance, calcareous soils, which exhibit diverse chemical properties and are found in varied environments, have historically been understudied. Using soils obtained from a decade-long, fully factorial field experiment located on temperate, near neutral pH, calcareous soils, this study examined the influence of cover crops (no-cover vs radish) and three levels of tillage intensity: shallow (10 cm) and deep (20 cm) non-inversion, and plough (25 cm inversion) on SOC and SIC stocks. Further, considering recent experimental and observational evidence indicating the interactions of SOC and SIC pools and their likely microbial control, we also investigated how SOC, the soil microbial biomass pool, and SIC are correlated. For SOC stock, there were significant interactions with total SIC and SOC:SIC ratio that differed by tillage intensity. Across the whole soil profile (0–60 cm), there was a significantly positive relationship between SOC content and SIC stock that was only present with ploughing. Further, at low SOC:SIC ratios (∼0.5–3.0), while SOC stock was marginally lower under plough, at higher SOC:SIC ratios (∼3.1–10.0), SOC stock was predicted to be up to ∼4–fold greater (4 kg m−2) with ploughing than the lower intensity tillage treatments. This result highlights a critical SOC-SIC interaction that, depending on tillage intensity, may offset anticipated disturbance-related loss of SOC, and challenges the common perception that tillage consistently reduces SOC. SOC stock was also ∼40 % (0.42 kg m−2) greater at 0–10 cm and ∼30 % (0.2 kg m−2) greater at 30–40 cm under radish cover crop than without. SIC stock differences were correlated with SOC content, tillage intensity and cover cropping. SIC stock was strongly correlated with SOC, with a predicted ∼0.3–1 kg m−2 increase in SIC stock for ∼1 % increase in SOC. Under radish cover crops and with ploughing, there was ∼0.7 kg m−2 more SIC than under all other conditions. Microbial biomass was positively correlated with SIC stock suggesting a causality that needs experimental testing. Given that reduced tillage is a frequently recommended practice to increase soil carbon storage and given the limited attention that has been paid to the influence of cover cropping on the SIC pool, our results indicate the need for further investigation around the dynamics of SOC and SIC interactions and stabilization processes in calcareous soils and highlights the pitfalls of a one-size-fits-all approach to soil carbon management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil & Tillage Research
Soil & Tillage Research 农林科学-土壤科学
CiteScore
13.00
自引率
6.20%
发文量
266
审稿时长
5 months
期刊介绍: Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research: The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.
期刊最新文献
Editorial Board Coupled iron oxides and microbial-mediated soil organic carbon stabilization across tea plantation chronosequences Evaluation of soil salt dynamics in a tomato-corn intercropping system with various spatial arrangements: Experiment and modeling Specific cation effects on soil water infiltration and soil aggregate stability–Comparison study on variably and permanently charged soils Long-term intercropping shaped soil bacterial microbiome composition and structure of maize fields in a semiarid region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1