Enhanced electrochemical performance of MoS2@CdS@GO ternary heterostructures for asymmetric supercapacitors

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-11-29 DOI:10.1016/j.est.2024.114788
Sheikh Irfan , Malik Aalim , Moayad Husein Flaifel , Irfan Nazir , M.A. Shah , Muzaffer Qadir Lone , Arfat Firdous , Altaf Hussain Pandith , G.N. Dar
{"title":"Enhanced electrochemical performance of MoS2@CdS@GO ternary heterostructures for asymmetric supercapacitors","authors":"Sheikh Irfan ,&nbsp;Malik Aalim ,&nbsp;Moayad Husein Flaifel ,&nbsp;Irfan Nazir ,&nbsp;M.A. Shah ,&nbsp;Muzaffer Qadir Lone ,&nbsp;Arfat Firdous ,&nbsp;Altaf Hussain Pandith ,&nbsp;G.N. Dar","doi":"10.1016/j.est.2024.114788","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene oxide (GO) combined with transition metal sulfides has been identified as a promising approach for energy storage, offering improved properties over pure transition metal sulfides. In this work, a ternary heterostructure of MoS₂, CdS, and GO (MoS₂@CdS@GO) was synthesized via a hydrothermal method. The structure was characterized using XRD, XPS, EDAX, Raman spectroscopy, UV–visible spectroscopy, and TEM. TEM images revealed that CdS nanoparticles are surrounded by MoS₂ and GO sheets. UV analysis confirmed that adding MoS₂@CdS to GO reduced the band gap of the composite. Electrochemical testing of GO, CdS, MoS₂, MoS₂@GO, MoS₂@CdS, and MoS₂@CdS@GO showed that the MoS₂@CdS@GO composite achieved an impressive specific capacitance of 1262 F/g at a scan rate of 6 mV/s and retained 91 % of its capacitance after 5000 cycles. This was attributed to the enhanced performance of MoS₂@GO in combination with CdS, which provides greater ion buffering and better charge storage. In practical terms, an asymmetric supercapacitor (ASC) utilizing MoS₂@CdS@GO showed 86.9 % capacitance retention after 5000 cycles and reached an energy density of 40.69 Wh/kg at a power density of 586.68 W/kg, highlighting its potential for energy storage devices.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"106 ","pages":"Article 114788"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24043743","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene oxide (GO) combined with transition metal sulfides has been identified as a promising approach for energy storage, offering improved properties over pure transition metal sulfides. In this work, a ternary heterostructure of MoS₂, CdS, and GO (MoS₂@CdS@GO) was synthesized via a hydrothermal method. The structure was characterized using XRD, XPS, EDAX, Raman spectroscopy, UV–visible spectroscopy, and TEM. TEM images revealed that CdS nanoparticles are surrounded by MoS₂ and GO sheets. UV analysis confirmed that adding MoS₂@CdS to GO reduced the band gap of the composite. Electrochemical testing of GO, CdS, MoS₂, MoS₂@GO, MoS₂@CdS, and MoS₂@CdS@GO showed that the MoS₂@CdS@GO composite achieved an impressive specific capacitance of 1262 F/g at a scan rate of 6 mV/s and retained 91 % of its capacitance after 5000 cycles. This was attributed to the enhanced performance of MoS₂@GO in combination with CdS, which provides greater ion buffering and better charge storage. In practical terms, an asymmetric supercapacitor (ASC) utilizing MoS₂@CdS@GO showed 86.9 % capacitance retention after 5000 cycles and reached an energy density of 40.69 Wh/kg at a power density of 586.68 W/kg, highlighting its potential for energy storage devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不对称超级电容器MoS2@CdS@GO三元异质结构的电化学性能增强
氧化石墨烯(GO)与过渡金属硫化物的结合被认为是一种很有前途的储能方法,其性能优于纯过渡金属硫化物。在这项工作中,通过水热法合成了MoS₂,CdS和GO (MoS₂@CdS@GO)的三元异质结构。采用XRD、XPS、EDAX、拉曼光谱、紫外可见光谱和透射电镜对其结构进行了表征。TEM图像显示,CdS纳米颗粒被MoS 2和GO薄膜包裹。紫外分析证实,在氧化石墨烯中加入MoS₂@CdS可以减小复合材料的带隙。对GO、CdS、MoS₂、MoS₂@GO、MoS₂@CdS和MoS₂@CdS@GO的电化学测试表明,在6 mV/s的扫描速率下,MoS₂@CdS@GO复合材料的比电容达到了1262 F/g,并且在5000次循环后保持了91%的电容。这是由于MoS₂@GO与CdS的结合性能增强,提供了更大的离子缓冲和更好的电荷存储。在实际应用中,利用MoS₂@CdS@GO的非对称超级电容器(ASC)在5000次循环后的电容保持率为86.9%,在586.68 W/kg的功率密度下达到40.69 Wh/kg的能量密度,突出了其作为储能器件的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Synergizing artificial intelligence and battery energy storage systems for a sustainable clean energy transition Experience-fusion dual-cache neural network for battery state of health estimation A dual-stage framework for lithium-ion battery state of health prediction using multi-strategy optimization for decomposition and neuro-fuzzy networks Investigation on the performance of supercapacitor banks under cyclic operation with an emphasis on thermal management Orbital hybridization-tailored Ni, Mo d-band centers in SnO2@α-NiMoO4 Heterostructures for inhibiting polysulfide shuttling in Lithium-sulfur batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1