{"title":"Structural characteristics of cement-based tail fill with sodium dodecyl sulfate, azodicarbonamide, and dodecyl trimethyl ammonium bromide","authors":"Tingting Jiang , Shuai Cao , Erol Yilmaz","doi":"10.1016/j.powtec.2024.120507","DOIUrl":null,"url":null,"abstract":"<div><div>The safety of mine-filled stopes is seriously affected by settlement and uneven pore distribution of cement-based tail fill (CTF). To further improve the mined-out areas' stability, it is found that foaming agents (FAs) can improve CTF's settlement characteristics. To better formulate FA-covered mine backfills (FCTFs), three principal FAs, namely, sodium dodecyl sulfate (SDS), azodicarbonamide (AC), and dodecyl trimethylammonium bromide (DTAB), were embraced in the existing research. Macro/micro properties of FCTF specimens were thoroughly examined by UCS tests and microstructure interpretations. Lab findings illustrate that diverse types of FA enhance CTF effects: DTAB>AC > SDS; DTAB-0.4 %, AC-0.4 % and SDS-0.6 % are the best dosage rates, and equivalent peak intensities are 0.7 MPa, 0.43 MPa and 0.55 MPa, respectively. Compared to None, the strength progress of FCTF specimens increased by 22 %, −27 %, and −7 %, respectively. Besides, FCTF's failure style is observed to happen in the form of shear failure along the loading direction. CTF specimens showed obvious ductility on stress-strain curvature, indicating that FA could well inhibit the expansion of cracks. To sum up, the research results can deliver a new way for comprehensive utilization of tailings.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"452 ","pages":"Article 120507"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024011513","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The safety of mine-filled stopes is seriously affected by settlement and uneven pore distribution of cement-based tail fill (CTF). To further improve the mined-out areas' stability, it is found that foaming agents (FAs) can improve CTF's settlement characteristics. To better formulate FA-covered mine backfills (FCTFs), three principal FAs, namely, sodium dodecyl sulfate (SDS), azodicarbonamide (AC), and dodecyl trimethylammonium bromide (DTAB), were embraced in the existing research. Macro/micro properties of FCTF specimens were thoroughly examined by UCS tests and microstructure interpretations. Lab findings illustrate that diverse types of FA enhance CTF effects: DTAB>AC > SDS; DTAB-0.4 %, AC-0.4 % and SDS-0.6 % are the best dosage rates, and equivalent peak intensities are 0.7 MPa, 0.43 MPa and 0.55 MPa, respectively. Compared to None, the strength progress of FCTF specimens increased by 22 %, −27 %, and −7 %, respectively. Besides, FCTF's failure style is observed to happen in the form of shear failure along the loading direction. CTF specimens showed obvious ductility on stress-strain curvature, indicating that FA could well inhibit the expansion of cracks. To sum up, the research results can deliver a new way for comprehensive utilization of tailings.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.