Innovative dispersant for reducing heterogeneous coagulation of pentlandite and serpentine and new insight for their dispersion

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Advanced Powder Technology Pub Date : 2024-11-29 DOI:10.1016/j.apt.2024.104746
Yuxin Xie , Jiwei Lu , Ruibiao Hu , Nailing Wang , Zhijian Wang , Zhitao Yuan , Lixia Li
{"title":"Innovative dispersant for reducing heterogeneous coagulation of pentlandite and serpentine and new insight for their dispersion","authors":"Yuxin Xie ,&nbsp;Jiwei Lu ,&nbsp;Ruibiao Hu ,&nbsp;Nailing Wang ,&nbsp;Zhijian Wang ,&nbsp;Zhitao Yuan ,&nbsp;Lixia Li","doi":"10.1016/j.apt.2024.104746","DOIUrl":null,"url":null,"abstract":"<div><div>Serpentine is easily muddy and has a high zero electric point of zero charge (PZC), which leads to heterogeneous coagulation with pentlandite, which seriously affects the flotation of pentlandite. To solve this problem, from the new perspective of reducing the heterogeneous coagulation of pentlandite-serpentine and dispersing them, this study explored the influence of sodium tungstate as a dispersant on the dispersion of between pentlandite and serpentine using flotation tests, zeta potential tests, scanning electron microscope-energy dispersive spectrometer (SEM-EDS) examination, molecular dynamics simulation (MS), and calculations of the extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory. The results show that −20 μm fine serpentine seriously deteriorates the flotation of pentlandite, while adding sodium tungstate can significantly promote the flotation separation of pentlandite and serpentine. MS simulation results showed that sodium tungstate could be chemisorbed with iron ions on the surface of pentlandite and mainly physisorbed with serpentine. EDLVO theoretical calculations show that after adsorption of sodium tungstate, the interaction between the two changed from attraction to repulsion at pH less than 10, and the mutual attraction was weakened at pH more significant than 10, thus weakening the heterogeneous coagulation between pentlandite and serpentine and causing serpentine to desorb from the surface of pentlandite, thus restoring the floatability of pentlandite, which SEM-EDS also confirmed. This provides a new insight into the dispersion mechanism of sodium tungstate as the innovative dispersant that is different from other dispersants for reducing heterogeneous coagulation of pentlandite and serpentine.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 1","pages":"Article 104746"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124004230","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Serpentine is easily muddy and has a high zero electric point of zero charge (PZC), which leads to heterogeneous coagulation with pentlandite, which seriously affects the flotation of pentlandite. To solve this problem, from the new perspective of reducing the heterogeneous coagulation of pentlandite-serpentine and dispersing them, this study explored the influence of sodium tungstate as a dispersant on the dispersion of between pentlandite and serpentine using flotation tests, zeta potential tests, scanning electron microscope-energy dispersive spectrometer (SEM-EDS) examination, molecular dynamics simulation (MS), and calculations of the extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory. The results show that −20 μm fine serpentine seriously deteriorates the flotation of pentlandite, while adding sodium tungstate can significantly promote the flotation separation of pentlandite and serpentine. MS simulation results showed that sodium tungstate could be chemisorbed with iron ions on the surface of pentlandite and mainly physisorbed with serpentine. EDLVO theoretical calculations show that after adsorption of sodium tungstate, the interaction between the two changed from attraction to repulsion at pH less than 10, and the mutual attraction was weakened at pH more significant than 10, thus weakening the heterogeneous coagulation between pentlandite and serpentine and causing serpentine to desorb from the surface of pentlandite, thus restoring the floatability of pentlandite, which SEM-EDS also confirmed. This provides a new insight into the dispersion mechanism of sodium tungstate as the innovative dispersant that is different from other dispersants for reducing heterogeneous coagulation of pentlandite and serpentine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
创新分散剂,减少戊铀矿和蛇纹石的非均相混凝和对其分散的新认识
蛇纹石具有较高的零电荷零电点(PZC),极易混浊,与镍黄铁矿发生非均相混凝,严重影响镍黄铁矿的浮选。为解决这一问题,本研究从减少戊铀矿-蛇纹石的非均相混凝和分散的新角度出发,采用浮选试验、zeta电位试验、扫描电镜-能谱仪(SEM-EDS)检测、分子动力学模拟(MS)等方法,探讨了钨酸钠作为分散剂对戊铀矿-蛇纹石之间分散的影响。扩展的Derjaguin-Landau-Verwey-Overbeek (EDLVO)理论的计算。结果表明:−20 μm细度的蛇纹石严重影响镍黄铁矿的浮选,而钨酸钠的加入可显著促进镍黄铁矿与蛇纹石的浮选分离。质谱模拟结果表明,钨酸钠在镍黄铁矿表面与铁离子发生化学吸附,主要与蛇纹石发生物理吸附。EDLVO理论计算表明,吸附钨酸钠后,在pH值小于10时,两者的相互作用由吸引变为排斥,而在pH值大于10时,两者的相互吸引减弱,从而减弱了镍铁矿与蛇纹石之间的非均相混凝作用,使蛇纹石从镍铁矿表面解吸,从而恢复了镍铁矿的可浮性,SEM-EDS也证实了这一点。这为钨酸钠作为一种不同于其他分散剂的新型分散剂在减少镍黄铁矿和蛇纹石的非均相混凝方面的分散机理提供了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
期刊最新文献
Impact of acid surface pretreatment on the aggregation and flotation behavior of micro-fine ilmenite and its functional mechanism Comparative study of powder characteristics and mechanical properties of Al2024 nanocomposites reinforced with carbon-based additives Study on the hybrid explosion mechanism of multicomponent combustible gas-coal dust in a coal spontaneous combustion environment Comparison of impact and compression stress in single particle breakage phenomena of multi-component systems Effects of mineral species transformation driven by surface dielectric barrier discharge plasma modification on the flotation performances: Perspective of critical oxidation degree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1