Basin-scale spatio-temporal development of glacial lakes in the Hindukush-Karakoram-Himalayas

IF 4 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Global and Planetary Change Pub Date : 2024-11-28 DOI:10.1016/j.gloplacha.2024.104656
Atul Kumar , Suraj Mal , Udo Schickhoff , A.P. Dimri
{"title":"Basin-scale spatio-temporal development of glacial lakes in the Hindukush-Karakoram-Himalayas","authors":"Atul Kumar ,&nbsp;Suraj Mal ,&nbsp;Udo Schickhoff ,&nbsp;A.P. Dimri","doi":"10.1016/j.gloplacha.2024.104656","DOIUrl":null,"url":null,"abstract":"<div><div>Glacial lakes are expanding exponentially in the cryospheric environment of the Hindukush-Karakoram-Himalayas (HKH). Rapid glacier melting due to an above mean global annual temperature increase in HKH is attributed as the main reason for the expansion of the glacial lakes. The rapid expansion of glacial lakes increases the risk of future Glacial Lake Outburst Floods (GLOFs) events in the HKH.</div><div>In the present study, glacial lake inventories for the Indus, Ganga and Brahmaputra (IGB) river basins in the HKH were generated for 1990, 2000, 2010 and 2020 using Landsat (TM &amp; OLI) at the sub-basin level to understand the spatio-temporal and regional patterns of glacial lakes dynamics, elevational evolution, and changes in the typology. We mapped 17,641 glacial lakes (area: 1082.57 ± 192.601 km<sup>2</sup>) in 1990, 18,206 (area: 1120.95 ± 198.49 km<sup>2</sup>) in 2000, 18,399 (area: 1147.12 ± 201.26 km<sup>2</sup>) in 2010, and 19,284 (area: 1191.81 ± 209.21 km<sup>2</sup>) in 2020. Between 1990 and 2020, IGB basins showed an increase of 9.31 % in total number and 10.09 % in total area of glacial lakes. In 2020, the Brahmaputra basin had the maximum total area (area: 763.59 ± 132.14 km<sup>2</sup>), followed by Indus basin (area: 217.47 ± 43.39 km<sup>2</sup>) and the Ganga basin (area: 210.74 ± 33.66 km<sup>2</sup>). However, between 1990 and 2020, glacial lakes in the Ganga basin (n: 22.08 %) had the highest growth rate, followed by the Indus basin (n: 14.73 %) and the Brahmaputra basin (n: 4.41 %). In 2020, 76.11 % of glacial lakes were end-moraine-dammed M(e) lakes, followed by other bedrock-dammed B(o) lakes (16.45 %), supraglacial lakes (2.79 %), lateral moraine-dammed M(l) lakes (2 %), cirque B(c) lakes (1.06 %), other moraine-dammed M(o) lakes (0.38 %), and other glacial (O) lakes (1.18 %). Given the rapid growth of glacial lakes in the region along with their likely flood volumes and damage potential in case of their failures, the present study will be of importance for disaster management authorities, an important input for detection of potentially hazardous glacial lakes and for development of mitigation strategies to minimize the impact of potential future GLOF events.</div></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"245 ","pages":"Article 104656"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124003035","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Glacial lakes are expanding exponentially in the cryospheric environment of the Hindukush-Karakoram-Himalayas (HKH). Rapid glacier melting due to an above mean global annual temperature increase in HKH is attributed as the main reason for the expansion of the glacial lakes. The rapid expansion of glacial lakes increases the risk of future Glacial Lake Outburst Floods (GLOFs) events in the HKH.
In the present study, glacial lake inventories for the Indus, Ganga and Brahmaputra (IGB) river basins in the HKH were generated for 1990, 2000, 2010 and 2020 using Landsat (TM & OLI) at the sub-basin level to understand the spatio-temporal and regional patterns of glacial lakes dynamics, elevational evolution, and changes in the typology. We mapped 17,641 glacial lakes (area: 1082.57 ± 192.601 km2) in 1990, 18,206 (area: 1120.95 ± 198.49 km2) in 2000, 18,399 (area: 1147.12 ± 201.26 km2) in 2010, and 19,284 (area: 1191.81 ± 209.21 km2) in 2020. Between 1990 and 2020, IGB basins showed an increase of 9.31 % in total number and 10.09 % in total area of glacial lakes. In 2020, the Brahmaputra basin had the maximum total area (area: 763.59 ± 132.14 km2), followed by Indus basin (area: 217.47 ± 43.39 km2) and the Ganga basin (area: 210.74 ± 33.66 km2). However, between 1990 and 2020, glacial lakes in the Ganga basin (n: 22.08 %) had the highest growth rate, followed by the Indus basin (n: 14.73 %) and the Brahmaputra basin (n: 4.41 %). In 2020, 76.11 % of glacial lakes were end-moraine-dammed M(e) lakes, followed by other bedrock-dammed B(o) lakes (16.45 %), supraglacial lakes (2.79 %), lateral moraine-dammed M(l) lakes (2 %), cirque B(c) lakes (1.06 %), other moraine-dammed M(o) lakes (0.38 %), and other glacial (O) lakes (1.18 %). Given the rapid growth of glacial lakes in the region along with their likely flood volumes and damage potential in case of their failures, the present study will be of importance for disaster management authorities, an important input for detection of potentially hazardous glacial lakes and for development of mitigation strategies to minimize the impact of potential future GLOF events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
兴都库什-喀喇昆仑-喜马拉雅地区冰川湖泊的流域尺度时空演化
在兴都库什-喀喇昆仑-喜马拉雅山脉(HKH)的冰冻圈环境中,冰川湖泊呈指数级增长。由于全球年平均气温高于HKH而导致的冰川快速融化被认为是冰湖扩大的主要原因。冰湖的快速扩张增加了未来HKH冰湖溃决洪水(GLOFs)事件的风险。在本研究中,利用Landsat (TM &;OLI)在次流域水平上了解冰湖动态、海拔演变和类型变化的时空和区域格局。1990年绘制了17641个冰湖(面积:1082.57±192.601 km2), 2000年绘制了18206个(面积:1120.95±198.49 km2), 2010年绘制了18399个(面积:1147.12±201.26 km2), 2020年绘制了19284个(面积:1191.81±209.21 km2)。1990 ~ 2020年,IGB流域冰湖总数增加了9.31%,面积增加了10.09%。2020年,雅鲁藏布江流域面积最大(763.59±132.14 km2),其次是印度河流域(217.47±43.39 km2)和恒河流域(210.74±33.66 km2)。1990 - 2020年间,恒河流域的冰川湖泊增长率最高(22.08%),其次是印度河流域(14.73%)和雅鲁藏布江流域(4.41%)。2020年,终碛垄M(e)型冰湖占76.11%,其次为其他基岩坝B(o)型冰湖(16.45%)、冰上湖(2.79%)、侧碛垄M(l)型冰湖(2%)、环碛垄B(c)型冰湖(1.06%)、其他冰碛垄M(o)型冰湖(0.38%)、其他冰碛垄M(o)型冰湖(1.18%)。考虑到该地区冰川湖的迅速增长及其可能的洪水量和一旦冰川湖破裂可能造成的损害,本研究对灾害管理当局具有重要意义,是发现潜在危险冰川湖和制定缓解战略以尽量减少未来潜在冰川湖事件影响的重要投入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global and Planetary Change
Global and Planetary Change 地学天文-地球科学综合
CiteScore
7.40
自引率
10.30%
发文量
226
审稿时长
63 days
期刊介绍: The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems. Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged. Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.
期刊最新文献
Gallium behavior and isotopic compositions in marine siliceous sediments from the southern Mariana Trench Population migration with improved productivity caused a heterogeneity pattern of Holocene vegetation succession in typical areas of the lower Yangtze region Flood occurrences and characteristics in Poland (Central Europe) in the last millennium Using seasonal palaeo-flow reconstructions and artificial neural networks for daily water balance modelling: A case study from Tasmania, Australia Enhanced human activities have disturbed the vegetation-climate relationship over the last millennium in the Changbai Mountains, north-east China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1