Changes in soil microbial community and carbon use efficiency in freeze-thaw period restored after growth season under warming and straw return

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE Applied Soil Ecology Pub Date : 2024-11-29 DOI:10.1016/j.apsoil.2024.105779
Minghui Liu , Zhiming Zhang , Peng He , Yifei Zhang , Lu-Jun Li
{"title":"Changes in soil microbial community and carbon use efficiency in freeze-thaw period restored after growth season under warming and straw return","authors":"Minghui Liu ,&nbsp;Zhiming Zhang ,&nbsp;Peng He ,&nbsp;Yifei Zhang ,&nbsp;Lu-Jun Li","doi":"10.1016/j.apsoil.2024.105779","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial communities and metabolic activities play key roles in carbon (C) turnover in terrestrial ecosystems, which are directly and indirectly affected by freeze-thaw cycles. However, the immediate and legacy effects of freeze-thaw periods on soil microbial community structure and C metabolic activity in agricultural ecosystems were still not fully understood. In this study, we evaluated the changes in soil microbial community structure and C metabolic activity during the freeze-thaw period and the growth season under the condition of warming and straw return. The results showed that the microbial biomass and the ratio of fungi to bacteria (F/B) were sensitive to freeze-thaw cycles and straw return. Both gradually decreased during the freeze-thaw period. The ratio of gram-positive to gram-negative bacteria (GP/GN) gradually increased during the freeze-thaw period. Then all these changes recovered during the growth season. Microorganisms have a certain self-regulating ability to deal with freeze-thaw stress. In contrast, microbial C use efficiency (CUE) did not significantly change during the freeze-thaw period, but increased during the growth season. Microbial CUE had no significant correlations with microbial biomass, the F/B, and the GP/GN, while it was negatively related with the ratio of dissoluble organic C to dissoluble total nitrogen (N) and the imbalance ratio between resources and microorganisms (C:N imbalance). These findings suggested that soil stoichiometric ratio played important role in regulating microbial CUE, instead of microbial community characteristics.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"205 ","pages":"Article 105779"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324005109","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial communities and metabolic activities play key roles in carbon (C) turnover in terrestrial ecosystems, which are directly and indirectly affected by freeze-thaw cycles. However, the immediate and legacy effects of freeze-thaw periods on soil microbial community structure and C metabolic activity in agricultural ecosystems were still not fully understood. In this study, we evaluated the changes in soil microbial community structure and C metabolic activity during the freeze-thaw period and the growth season under the condition of warming and straw return. The results showed that the microbial biomass and the ratio of fungi to bacteria (F/B) were sensitive to freeze-thaw cycles and straw return. Both gradually decreased during the freeze-thaw period. The ratio of gram-positive to gram-negative bacteria (GP/GN) gradually increased during the freeze-thaw period. Then all these changes recovered during the growth season. Microorganisms have a certain self-regulating ability to deal with freeze-thaw stress. In contrast, microbial C use efficiency (CUE) did not significantly change during the freeze-thaw period, but increased during the growth season. Microbial CUE had no significant correlations with microbial biomass, the F/B, and the GP/GN, while it was negatively related with the ratio of dissoluble organic C to dissoluble total nitrogen (N) and the imbalance ratio between resources and microorganisms (C:N imbalance). These findings suggested that soil stoichiometric ratio played important role in regulating microbial CUE, instead of microbial community characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增温和秸秆还田条件下冻融期土壤微生物群落和碳利用效率的变化在生长季结束后有所恢复
冻融循环直接或间接地影响着陆地生态系统的碳(C)转换,微生物群落和代谢活动在其中起着关键作用。然而,冻融期对农业生态系统土壤微生物群落结构和碳代谢活性的直接影响和遗留影响尚不完全清楚。研究了增温和秸秆还田条件下冻融期和生长季土壤微生物群落结构和碳代谢活性的变化。结果表明:冻融循环和秸秆还田对土壤微生物生物量和菌真菌比(F/B)较为敏感;两者在冻融期逐渐降低。革兰氏阳性菌与革兰氏阴性菌的比值(GP/GN)在冻融期间逐渐升高。然后这些变化在生长季节恢复。微生物对冻融胁迫具有一定的自我调节能力。微生物碳利用效率(CUE)在冻融期变化不显著,但在生长季节有所提高。微生物CUE与微生物生物量、F/B、GP/GN无显著相关,而与可溶性有机碳/可溶性总氮(N)比值、资源与微生物间失衡比(C:N失衡)呈显著负相关。这些结果表明,土壤化学计量比对微生物CUE的调节作用更重要,而不是微生物群落特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
期刊最新文献
Editorial Board Influence of land-use type on earthworm diversity and distribution in Yunnan: Insights from soil properties Breeding-induced changes in the rhizosphere microbial communities in Lima bean (Phaseolus lunatus) Corrigendum to “Characteristics of microbial community during the different growth stages of yam (Dioscorea opposita Thunb. cv. Tiegun)” [Appl. Soil Ecol. 201 (2024) 105519] Erratum to “Lack of inhibitory effects of 1-Octyne and PTIO on ammonia oxidizers, nitrite oxidizers, and nitrate formation in acidic paddy soils” [Appl. Soil Ecol. 203 (2024) 105673]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1