Guiyin Li , Wenzhan Li , Yu Zhou , Xiaohong Tan , Qing Huang , Jintao Liang , Zhide Zhou
{"title":"Label-free determination of glypican-3 using PtPd@H-rGO nanocomposites decorated light-addressable potentiometric sensor","authors":"Guiyin Li , Wenzhan Li , Yu Zhou , Xiaohong Tan , Qing Huang , Jintao Liang , Zhide Zhou","doi":"10.1016/j.bioelechem.2024.108855","DOIUrl":null,"url":null,"abstract":"<div><div>Glypican-3 (GPC3) is exclusively overexpressed in most Hepatocellular carcinoma (HCC) tissue but not in normal liver tissue, making it a promising biomarker for the precise detection of HCC. In this paper, a label-free light-addressable potentiometric sensor (LAPS) decorated by platinumpalladium-hemin-reduced graphene oxide nanocomposites (PtPd@H-rGO NCs) was constructed for determination of GPC3. The GPC3 aptamer (GPC3<sub>Apt</sub>) and PtPd@H-rGO NCs were modified on the surface of silicon-based LAPS chip to build sensitive unit of LAPS system. A readout photocurrent elicited from a modulated light source, registers the localized surface potential change. When a bias voltage is provided to the LAPS system, the GPC3-GPC3<sub>Apt</sub> complexes formed by the specific reaction between GPC3 and GPC3<sub>Apt</sub> at the sensing interface can cause the sensitive membrane surface potential to change, resulting in the photocurrent-voltage (I-V) curves generate a corresponding offset response. Therefore GPC3 concentration can be determined by monitoring the potential shifts (△V). Under optimal conditions, the potential shift is linearly related to the concentration of GPC3 in the range of 0.001–3.00 μg/mL with the limit of detection (LOD) of 0.0001 μg/mL. The LAPS has a good analytical performance with good specificity, reproducibility and stability, and can be used for the detection of GPC3 in actual serum samples, which provides a broad application prospect for the combined application of LAPS and aptamers in biooassay.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"162 ","pages":"Article 108855"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424002172","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glypican-3 (GPC3) is exclusively overexpressed in most Hepatocellular carcinoma (HCC) tissue but not in normal liver tissue, making it a promising biomarker for the precise detection of HCC. In this paper, a label-free light-addressable potentiometric sensor (LAPS) decorated by platinumpalladium-hemin-reduced graphene oxide nanocomposites (PtPd@H-rGO NCs) was constructed for determination of GPC3. The GPC3 aptamer (GPC3Apt) and PtPd@H-rGO NCs were modified on the surface of silicon-based LAPS chip to build sensitive unit of LAPS system. A readout photocurrent elicited from a modulated light source, registers the localized surface potential change. When a bias voltage is provided to the LAPS system, the GPC3-GPC3Apt complexes formed by the specific reaction between GPC3 and GPC3Apt at the sensing interface can cause the sensitive membrane surface potential to change, resulting in the photocurrent-voltage (I-V) curves generate a corresponding offset response. Therefore GPC3 concentration can be determined by monitoring the potential shifts (△V). Under optimal conditions, the potential shift is linearly related to the concentration of GPC3 in the range of 0.001–3.00 μg/mL with the limit of detection (LOD) of 0.0001 μg/mL. The LAPS has a good analytical performance with good specificity, reproducibility and stability, and can be used for the detection of GPC3 in actual serum samples, which provides a broad application prospect for the combined application of LAPS and aptamers in biooassay.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.