A DNA sensor based on CbAgo effector protein and on a dual electrochemical signal amplification strategy for B19 parvovirus detection

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioelectrochemistry Pub Date : 2024-11-26 DOI:10.1016/j.bioelechem.2024.108860
Siying Mao , Zhiruo Yang , Zhiyi Liu , Yue Wang , Yonghua Zeng , Nicole Jaffrezic-Renault , Zhipeng Zhang , Yanming Dong , Zhenzhong Guo
{"title":"A DNA sensor based on CbAgo effector protein and on a dual electrochemical signal amplification strategy for B19 parvovirus detection","authors":"Siying Mao ,&nbsp;Zhiruo Yang ,&nbsp;Zhiyi Liu ,&nbsp;Yue Wang ,&nbsp;Yonghua Zeng ,&nbsp;Nicole Jaffrezic-Renault ,&nbsp;Zhipeng Zhang ,&nbsp;Yanming Dong ,&nbsp;Zhenzhong Guo","doi":"10.1016/j.bioelechem.2024.108860","DOIUrl":null,"url":null,"abstract":"<div><div>Human parvovirus B19 is a prevalent childhood infectious virus that poses a great challenge to public health, so the detection of B19V is of great importance. In this study, a DNA sensor based on <em>Cb</em>Ago, a Cas effector, and a dual electrochemical signal amplification strategy was developed by using a novel nanocomposite MnO<sub>2</sub>/CMK-3/g-C<sub>3</sub>N<sub>4</sub>/AgNPs for initial signal amplification, with CMK being an ordered mesoporous carbon nanomaterial. Single-walled carbon nanotubes (SWCNTs) were used as electrocatalytic probes for secondary signal amplification to detect B19 DNA. The detection process begins with polymerase chain reaction (PCR) amplification using the B19V infectious clone plasmid (pB19-M20) as a template and NS1-F/R as primers, followed by specific cleavage of B19 DNA based on the programmable cutting sites of <em>Cb</em>Ago effector protein. This study enriches the application of Argonaute proteins in sensing and introduces a novel method to detect B19V. Under optimized conditions, the biosensor can detect B19 DNA in the range of 10<sup>−15</sup>–10<sup>−10</sup> M, with a detection limit (LOD) of 0.2 fM. The results indicate that the developed DNA sensor holds promise for reliable and sensitive detection of B19 DNA in human serum.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"162 ","pages":"Article 108860"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424002226","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human parvovirus B19 is a prevalent childhood infectious virus that poses a great challenge to public health, so the detection of B19V is of great importance. In this study, a DNA sensor based on CbAgo, a Cas effector, and a dual electrochemical signal amplification strategy was developed by using a novel nanocomposite MnO2/CMK-3/g-C3N4/AgNPs for initial signal amplification, with CMK being an ordered mesoporous carbon nanomaterial. Single-walled carbon nanotubes (SWCNTs) were used as electrocatalytic probes for secondary signal amplification to detect B19 DNA. The detection process begins with polymerase chain reaction (PCR) amplification using the B19V infectious clone plasmid (pB19-M20) as a template and NS1-F/R as primers, followed by specific cleavage of B19 DNA based on the programmable cutting sites of CbAgo effector protein. This study enriches the application of Argonaute proteins in sensing and introduces a novel method to detect B19V. Under optimized conditions, the biosensor can detect B19 DNA in the range of 10−15–10−10 M, with a detection limit (LOD) of 0.2 fM. The results indicate that the developed DNA sensor holds promise for reliable and sensitive detection of B19 DNA in human serum.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
期刊最新文献
Label-free determination of glypican-3 using PtPd@H-rGO nanocomposites decorated light-addressable potentiometric sensor Electrochemical immunosensors based on the solubility difference of electroactive probe and the dual signal amplification of nanocarrier plus redox cycling A DNA sensor based on CbAgo effector protein and on a dual electrochemical signal amplification strategy for B19 parvovirus detection Detection of HPV 16 and 18 L1 genes by a nucleic acid amplification-free electrochemical biosensor powered by CRISPR/Cas9 A novel aptamer-based photoelectrochemical sensor for zearalenone detection: Integration of g-C3N4/BiOBr with in situ growth Ag2S quantum dots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1