Parallel primal-dual active-set algorithm with nonlinear and linear preconditioners

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Physics Pub Date : 2024-11-28 DOI:10.1016/j.jcp.2024.113630
Guangliang Zhang , Haijian Yang , Tianpei Cheng , Chao Yang
{"title":"Parallel primal-dual active-set algorithm with nonlinear and linear preconditioners","authors":"Guangliang Zhang ,&nbsp;Haijian Yang ,&nbsp;Tianpei Cheng ,&nbsp;Chao Yang","doi":"10.1016/j.jcp.2024.113630","DOIUrl":null,"url":null,"abstract":"<div><div>The primal-dual active-set (PDAS) algorithm is a well-established and efficient method for addressing complementarity problems. However, the majority of existing approaches primarily concentrate on solving this non-smooth system with linear cases, and the straightforward extension of the primal-dual active-set method for solving nonlinear large-scale engineering problems does not work as well as expected, due to the unbalanced nonlinearities that bring about the difficulty of the slow convergence or stagnation. In the paper, we present the primal-dual active-set method with backtracking on the parallel computing framework for solving the nonlinear complementarity problem (NCP) arising from the discretization of partial differential equations. Some adaptive nonlinear preconditioning strategies based on nonlinear elimination are presented to handle the high nonlinearity of the nonsmooth system, and a family of linear preconditioners based on domain decomposition is developed to enhance the efficiency and scalability of this Newton-type method. Moreover, rigorous proof to establish both the monotone and superlinear convergence of the primal-dual active-set algorithm is also provided for the theoretical analysis. A series of numerical experiments for a family of multiphase reservoir problems, i.e., the CO<sub>2</sub> injection model, are carried out to demonstrate the robustness and efficiency of the proposed parallel algorithm.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"523 ","pages":"Article 113630"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008787","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The primal-dual active-set (PDAS) algorithm is a well-established and efficient method for addressing complementarity problems. However, the majority of existing approaches primarily concentrate on solving this non-smooth system with linear cases, and the straightforward extension of the primal-dual active-set method for solving nonlinear large-scale engineering problems does not work as well as expected, due to the unbalanced nonlinearities that bring about the difficulty of the slow convergence or stagnation. In the paper, we present the primal-dual active-set method with backtracking on the parallel computing framework for solving the nonlinear complementarity problem (NCP) arising from the discretization of partial differential equations. Some adaptive nonlinear preconditioning strategies based on nonlinear elimination are presented to handle the high nonlinearity of the nonsmooth system, and a family of linear preconditioners based on domain decomposition is developed to enhance the efficiency and scalability of this Newton-type method. Moreover, rigorous proof to establish both the monotone and superlinear convergence of the primal-dual active-set algorithm is also provided for the theoretical analysis. A series of numerical experiments for a family of multiphase reservoir problems, i.e., the CO2 injection model, are carried out to demonstrate the robustness and efficiency of the proposed parallel algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
期刊最新文献
Strongly stable dual-pairing summation by parts finite difference schemes for the vector invariant nonlinear shallow water equations – I: Numerical scheme and validation on the plane Parallel primal-dual active-set algorithm with nonlinear and linear preconditioners Editorial Board Editorial Board Analysis of finite-volume transport schemes on cubed-sphere grids and an accurate scheme for divergent winds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1