{"title":"On the use of phase laws for the Linear Sampling Method in an elastic waveguide. Application to nondestructive testing","authors":"Arnaud Recoquillay","doi":"10.1016/j.wavemoti.2024.103447","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the use of phased array data as the input of the Linear Sampling Method for elastic waveguides. Indeed, this method enables the high frequency, hence high resolution, inspection of waveguides, which is of interest for example for nondestructive testing applications. However, the use of single emitter data, also known as Full Matrix Capture in the Non Destructive Testing (NDT) context, leads to poor signal to noise ratios as low amplitude signals are emitted and only a fraction of the energy reaches the potential defect. The use of phase laws, that is the simultaneous emission with multiple sensors, enables better signal to noise ratios. However, the drawback may be a loss on the conditioning of the method, which may lead to higher sensitivity to noise in the end. This paper shows how to choose the sensors and the phase laws to obtain a satisfactory imaging results. This is exemplified on experimental data acquired in a steel plate with a circular hole.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"133 ","pages":"Article 103447"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016521252400177X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the use of phased array data as the input of the Linear Sampling Method for elastic waveguides. Indeed, this method enables the high frequency, hence high resolution, inspection of waveguides, which is of interest for example for nondestructive testing applications. However, the use of single emitter data, also known as Full Matrix Capture in the Non Destructive Testing (NDT) context, leads to poor signal to noise ratios as low amplitude signals are emitted and only a fraction of the energy reaches the potential defect. The use of phase laws, that is the simultaneous emission with multiple sensors, enables better signal to noise ratios. However, the drawback may be a loss on the conditioning of the method, which may lead to higher sensitivity to noise in the end. This paper shows how to choose the sensors and the phase laws to obtain a satisfactory imaging results. This is exemplified on experimental data acquired in a steel plate with a circular hole.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.