Jong Min Park, Seungki Jo, Soo-ho Jung, Jinhee Bae, Linh Ba Vu, Jihun Yu, Kyung Tae Kim
{"title":"Improving thermoelectric properties of CuMnSb alloys via strategic alloying with magnetic MnSb and Cu","authors":"Jong Min Park, Seungki Jo, Soo-ho Jung, Jinhee Bae, Linh Ba Vu, Jihun Yu, Kyung Tae Kim","doi":"10.1016/j.matlet.2024.137796","DOIUrl":null,"url":null,"abstract":"<div><div>MnSb alloys are promising candidates for thermally stable magnetic materials in spintronic devices due to their high Curie temperature. When alloyed with transition metals, they hold potential as thermoelectric materials by adopting a half-Heusler structure. Among the few 3d transition metal-based compounds, CuMnSb alloys exhibit antiferromagnetic properties along with thermoelectric behavior. In this study, the CuMnSb alloy was synthesized using arc-melting, followed by powdering and spark plasma sintering. The thermoelectric properties were characterized in a temperature range of 298–673 K. The results indicate a significant improvement in the thermoelectric figure-of-merit (<em>zT</em>) of CuMnSb compared to MnSb, attributed to the increased power factor and reduced thermal conductivity through Cu alloying. These findings demonstrate the potential for obtaining half-Heusler-like thermoelectric materials by tailoring high-temperature magnetic materials.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"381 ","pages":"Article 137796"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24019360","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
MnSb alloys are promising candidates for thermally stable magnetic materials in spintronic devices due to their high Curie temperature. When alloyed with transition metals, they hold potential as thermoelectric materials by adopting a half-Heusler structure. Among the few 3d transition metal-based compounds, CuMnSb alloys exhibit antiferromagnetic properties along with thermoelectric behavior. In this study, the CuMnSb alloy was synthesized using arc-melting, followed by powdering and spark plasma sintering. The thermoelectric properties were characterized in a temperature range of 298–673 K. The results indicate a significant improvement in the thermoelectric figure-of-merit (zT) of CuMnSb compared to MnSb, attributed to the increased power factor and reduced thermal conductivity through Cu alloying. These findings demonstrate the potential for obtaining half-Heusler-like thermoelectric materials by tailoring high-temperature magnetic materials.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive