Linear and neural network models for predicting N-glycosylation in Chinese Hamster Ovary cells based on B4GALT levels

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-11-23 DOI:10.1016/j.compchemeng.2024.108937
Pedro Seber, Richard D. Braatz
{"title":"Linear and neural network models for predicting N-glycosylation in Chinese Hamster Ovary cells based on B4GALT levels","authors":"Pedro Seber,&nbsp;Richard D. Braatz","doi":"10.1016/j.compchemeng.2024.108937","DOIUrl":null,"url":null,"abstract":"<div><div>Glycosylation is an essential modification to proteins that has positive effects, such as improving the half-life of antibodies, and negative effects, such as promoting cancers. Despite the importance of glycosylation, data-driven models to predict quantitative N-glycan distributions have been lacking. This article constructs linear and neural network models to predict the distribution of glycans on N-glycosylation sites. The models are trained on data containing normalized B4GALT1–B4GALT4 levels in Chinese Hamster Ovary cells. The ANN models achieve a median prediction error of 1.59% on an independent test set, an error 9-fold smaller than for previously published models using the same data, and a narrow error distribution. We also discuss issues with other models in the literature and the advantages of this work’s model over other data-driven models. We openly provide all of the software used, allowing other researchers to reproduce the work and reuse or improve the code in future endeavors.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108937"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003557","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Glycosylation is an essential modification to proteins that has positive effects, such as improving the half-life of antibodies, and negative effects, such as promoting cancers. Despite the importance of glycosylation, data-driven models to predict quantitative N-glycan distributions have been lacking. This article constructs linear and neural network models to predict the distribution of glycans on N-glycosylation sites. The models are trained on data containing normalized B4GALT1–B4GALT4 levels in Chinese Hamster Ovary cells. The ANN models achieve a median prediction error of 1.59% on an independent test set, an error 9-fold smaller than for previously published models using the same data, and a narrow error distribution. We also discuss issues with other models in the literature and the advantages of this work’s model over other data-driven models. We openly provide all of the software used, allowing other researchers to reproduce the work and reuse or improve the code in future endeavors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于B4GALT水平预测中国仓鼠卵巢细胞n -糖基化的线性和神经网络模型
糖基化是对蛋白质的一种必要修饰,它有积极的影响,比如改善抗体的半衰期,也有消极的影响,比如促进癌症的发生。尽管糖基化的重要性,数据驱动的模型预测定量的n -聚糖分布一直缺乏。本文构建了线性和神经网络模型来预测n -糖基化位点上聚糖的分布。该模型使用中国仓鼠卵巢细胞B4GALT1-B4GALT4归一化水平数据进行训练。人工神经网络模型在独立测试集上的中位预测误差为1.59%,比先前发表的使用相同数据的模型的误差小9倍,并且误差分布窄。我们还讨论了文献中其他模型的问题,以及本工作模型相对于其他数据驱动模型的优势。我们公开提供所使用的所有软件,允许其他研究人员重现工作并在未来的努力中重用或改进代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features CPU and GPU based acceleration of high-dimensional population balance models via the vectorization and parallelization of multivariate aggregation and breakage integral terms Piecewise linear approximation using J1 compatible triangulations for efficient MILP representation Stochastic algorithm-based optimization using artificial intelligence/machine learning models for sorption enhanced steam methane reformer reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1