Jin Zeng , Qing Zhao , Zhiqiang Xiong , Siyu Zhang , Shuo Deng , Daxu Liu , Xuejiao Zhang
{"title":"Surface functionalization of two-dimensional nanomaterials beyond graphene: Applications and ecotoxicity","authors":"Jin Zeng , Qing Zhao , Zhiqiang Xiong , Siyu Zhang , Shuo Deng , Daxu Liu , Xuejiao Zhang","doi":"10.1016/j.cis.2024.103357","DOIUrl":null,"url":null,"abstract":"<div><div>Two dimensional (2D) nanomaterials have emerged as promising candidates in nanotechnology due to their excellent physical, chemical, and electronic properties. However, they also pose challenges such as environmental instability and low biosafety. To address these issues, researchers have been exploring various surface functionalization methods to enhance the performance of 2D nanomaterials in practical applications. Moreover, when released into the environment, these 2D nanomaterials may interact with natural organic matter (NOM). Both intentional surface modification and unintentional environmental corona formation can alter the structure and physicochemical properties of 2D nanomaterials, potentially affecting their ecological toxicity. This review provides a comprehensive overview of covalent functionalization strategies and non-covalent interactions of 2D nanomaterials beyond graphene with organic substances, examining the resultant changes in material properties after modification. Covalent functionalization methods discussed include nucleophilic substitution reactions, addition reactions, condensation, and coordination. Non-covalent interactions are classified by substance type, covering interactions with NOM, in vivo biomolecules, and synthetic compounds. In addition, the review delves into the effects of surface functionalization on the toxicity of 2D nanomaterials to bacteria and algae. This discussion contributes to a foundational understanding for assessing the potential ecological risks associated with 2D nanomaterials.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"336 ","pages":"Article 103357"},"PeriodicalIF":15.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000186862400280X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two dimensional (2D) nanomaterials have emerged as promising candidates in nanotechnology due to their excellent physical, chemical, and electronic properties. However, they also pose challenges such as environmental instability and low biosafety. To address these issues, researchers have been exploring various surface functionalization methods to enhance the performance of 2D nanomaterials in practical applications. Moreover, when released into the environment, these 2D nanomaterials may interact with natural organic matter (NOM). Both intentional surface modification and unintentional environmental corona formation can alter the structure and physicochemical properties of 2D nanomaterials, potentially affecting their ecological toxicity. This review provides a comprehensive overview of covalent functionalization strategies and non-covalent interactions of 2D nanomaterials beyond graphene with organic substances, examining the resultant changes in material properties after modification. Covalent functionalization methods discussed include nucleophilic substitution reactions, addition reactions, condensation, and coordination. Non-covalent interactions are classified by substance type, covering interactions with NOM, in vivo biomolecules, and synthetic compounds. In addition, the review delves into the effects of surface functionalization on the toxicity of 2D nanomaterials to bacteria and algae. This discussion contributes to a foundational understanding for assessing the potential ecological risks associated with 2D nanomaterials.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.