YAP1 overexpression aggravates the progress of diabetic retinopathy by activating the TUG1/miR-144–3p/VEGFA signaling pathway in the hypoxia-induced DR MRMECs model

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY Tissue & cell Pub Date : 2024-11-17 DOI:10.1016/j.tice.2024.102620
Ying Yang
{"title":"YAP1 overexpression aggravates the progress of diabetic retinopathy by activating the TUG1/miR-144–3p/VEGFA signaling pathway in the hypoxia-induced DR MRMECs model","authors":"Ying Yang","doi":"10.1016/j.tice.2024.102620","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic retinopathy (DR) has been proven to be a leading cause of blindness. This study aimed to investigate the effect of Yes-associated protein 1 (YAP1) on the hypoxia-induced DR mice retinal microvascular endothelial cells (MRMECs) model. The hypoxia-induced DR MRMECs model was generated by treating in hypoxia circumstance (5 % CO<sub>2</sub> and 3 % O<sub>2</sub>) for 48 h. This study constructed YAP1 overexpression and taurine-upregulated gene 1 (TUG1) silencing lentiviral vectors, both of which were used to infect the DR MRMECs model. Quantitative real-time PCR (qRT-PCR) was used to amplify the YAP1, TUG1, vascular endothelial growth factor A (VEGFA), and miR-144–3p gene. Western blot was used to identify the expression of YAP1 and VEGFA. The CCK-8 assay was used to evaluate proliferation and the flow cytometry assay was used to determine apoptosis of MRMECs. Cell migration and tube formation were also evaluated. The results showed that YAP1 overexpression and TUG1 silencing lentivirus were successfully constructed. YAP1 overexpression significantly promoted, but TUG1 silence inhibited cell proliferation and migration compared to DR MRMECs model (<em>P</em>&lt;0.05). YAP1 markedly promoted TUG1/VEGFA and reduced miR-144–3p gene transcription compared to those of the DR MRMECs model (<em>P</em>&lt;0.05). YA<em>P</em>1 overexpression and TUG1 silence demonstrated the opposite effects on VEGFA expression. YAP1 overexpression obviously promoted tube formation of MRMECs. In conclusion, overexpression of YAP1 promoted cell proliferation, cell migration, TUG1 and VEGFA expression, and reduced the transcription of the miR-144–3p gene in DR MRMECs. Overexpression of YAP1 aggravated the progress of DR in MRMECs by activating the TUG1/miR-144–3p/VEGFA signaling pathway.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"92 ","pages":"Article 102620"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624003215","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic retinopathy (DR) has been proven to be a leading cause of blindness. This study aimed to investigate the effect of Yes-associated protein 1 (YAP1) on the hypoxia-induced DR mice retinal microvascular endothelial cells (MRMECs) model. The hypoxia-induced DR MRMECs model was generated by treating in hypoxia circumstance (5 % CO2 and 3 % O2) for 48 h. This study constructed YAP1 overexpression and taurine-upregulated gene 1 (TUG1) silencing lentiviral vectors, both of which were used to infect the DR MRMECs model. Quantitative real-time PCR (qRT-PCR) was used to amplify the YAP1, TUG1, vascular endothelial growth factor A (VEGFA), and miR-144–3p gene. Western blot was used to identify the expression of YAP1 and VEGFA. The CCK-8 assay was used to evaluate proliferation and the flow cytometry assay was used to determine apoptosis of MRMECs. Cell migration and tube formation were also evaluated. The results showed that YAP1 overexpression and TUG1 silencing lentivirus were successfully constructed. YAP1 overexpression significantly promoted, but TUG1 silence inhibited cell proliferation and migration compared to DR MRMECs model (P<0.05). YAP1 markedly promoted TUG1/VEGFA and reduced miR-144–3p gene transcription compared to those of the DR MRMECs model (P<0.05). YAP1 overexpression and TUG1 silence demonstrated the opposite effects on VEGFA expression. YAP1 overexpression obviously promoted tube formation of MRMECs. In conclusion, overexpression of YAP1 promoted cell proliferation, cell migration, TUG1 and VEGFA expression, and reduced the transcription of the miR-144–3p gene in DR MRMECs. Overexpression of YAP1 aggravated the progress of DR in MRMECs by activating the TUG1/miR-144–3p/VEGFA signaling pathway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
期刊最新文献
Mandibular bone defect healing using polylactic acid-nano-hydroxyapatite-gelatin scaffold loaded with hesperidin and dental pulp stem cells in rat. Inhibition of proliferation, migration and invasion of RM-1 cells by roemerine: Insights from in vitro and in vivo studies. METTL3/IGF2BP1 promotes the development of triple-negative breast cancer by mediating m6A methylation modification of PRMT7. Decellularization of human iliac artery: A vascular scaffold for peripheral repairs with human mesenchymal cells. Therapeutic potential of adult stem cells-derived mitochondria transfer combined with curcumin administration into ARPE-19 cells in age-related macular degeneration model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1