Liquid crystal display with high transmittance and excellent image quality

IF 3.1 3区 物理与天体物理 Q2 Engineering Optik Pub Date : 2024-11-06 DOI:10.1016/j.ijleo.2024.172105
Jing Liu , Xiaoying Huang , Zhigang Peng , Xiaojin He , Hongyuan Xu
{"title":"Liquid crystal display with high transmittance and excellent image quality","authors":"Jing Liu ,&nbsp;Xiaoying Huang ,&nbsp;Zhigang Peng ,&nbsp;Xiaojin He ,&nbsp;Hongyuan Xu","doi":"10.1016/j.ijleo.2024.172105","DOIUrl":null,"url":null,"abstract":"<div><div>High transmittance and excellent image quality are two crucial requirements for thin-film transistor liquid crystal displays (TFT-LCDs). This work presents a novel pixel structure utilizing a vertical alignment liquid crystal (VA-LC) to improve both transmittance and image quality. The new pixel structure, called TCL-pixel, features a unique transparent conducting layer (TCL) that constructs an electric field shielding layer and a large transparent storage capacitor, resulting in good stability and a large aperture ratio. The 55\" 8 K product incorporating the TCL-pixel achieves high transmittance (3.87 %) and a high contrast ratio (5100:1), attributed to the large aperture ratio. Additionally, it exhibits negligible vertical cross talk (0.7 %), low color cross talk (3 ‰), low horizontal cross talk (JND 2.3), and enhanced variable refresh rate performance, confirming its good stability. Furthermore, the TCL-pixel demonstrates an improved viewing angle (CESI 0.03:65°) due to the multi-domain alignment produced by the transparent conducting layer.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"320 ","pages":"Article 172105"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624005047","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

High transmittance and excellent image quality are two crucial requirements for thin-film transistor liquid crystal displays (TFT-LCDs). This work presents a novel pixel structure utilizing a vertical alignment liquid crystal (VA-LC) to improve both transmittance and image quality. The new pixel structure, called TCL-pixel, features a unique transparent conducting layer (TCL) that constructs an electric field shielding layer and a large transparent storage capacitor, resulting in good stability and a large aperture ratio. The 55" 8 K product incorporating the TCL-pixel achieves high transmittance (3.87 %) and a high contrast ratio (5100:1), attributed to the large aperture ratio. Additionally, it exhibits negligible vertical cross talk (0.7 %), low color cross talk (3 ‰), low horizontal cross talk (JND 2.3), and enhanced variable refresh rate performance, confirming its good stability. Furthermore, the TCL-pixel demonstrates an improved viewing angle (CESI 0.03:65°) due to the multi-domain alignment produced by the transparent conducting layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
期刊最新文献
Weak mode locking dynamics in a thulium-doped fiber laser Design of cascaded diffractive optical elements generating different intensity distributions at several operating wavelengths Whispery gallery mode plasmonic biosensor based on intensifying graphene layer Chemometric advances in COD analysis: Overcoming turbidity interference with a Hybrid PLS-ANN approach A closely spaced dual-band dual-sense linear-to-circular polarization converter for X-band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1