High degree simplification and tunable absorption features of terahertz metamaterial absorber

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS Wave Motion Pub Date : 2024-11-17 DOI:10.1016/j.wavemoti.2024.103450
Shahzad Anwar , Ghafar Ali , Maaz Khan , Forough Bozorgzadeh
{"title":"High degree simplification and tunable absorption features of terahertz metamaterial absorber","authors":"Shahzad Anwar ,&nbsp;Ghafar Ali ,&nbsp;Maaz Khan ,&nbsp;Forough Bozorgzadeh","doi":"10.1016/j.wavemoti.2024.103450","DOIUrl":null,"url":null,"abstract":"<div><div>This work demonstrated to attain a multiband absorption in the terahertz region with high degree simplification and tunable absorption characteristics. The design model composed of an H-type resonator placed above on a middle layer (dielectric medium) and a metallic layer at the bottom. The single sized resonator strongly interacts with incident electromagnetic wave resulting four near perfect absorption peaks located at 0.625 THz, 1.85 THz, 2.075 THz, and 2.5 THz. Moreover, the suggested design was also investigated for active modulation features by inserting vanadium dioxide (VO2) material into the design metamaterial structure due to which the quad-band absorption profile exhibits a switchable function by variation in the state phase of VO2 from insulator to metallic phase. Therefore, the design structure could have wide range of potential THz technology related field applications.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"133 ","pages":"Article 103450"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016521252400180X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work demonstrated to attain a multiband absorption in the terahertz region with high degree simplification and tunable absorption characteristics. The design model composed of an H-type resonator placed above on a middle layer (dielectric medium) and a metallic layer at the bottom. The single sized resonator strongly interacts with incident electromagnetic wave resulting four near perfect absorption peaks located at 0.625 THz, 1.85 THz, 2.075 THz, and 2.5 THz. Moreover, the suggested design was also investigated for active modulation features by inserting vanadium dioxide (VO2) material into the design metamaterial structure due to which the quad-band absorption profile exhibits a switchable function by variation in the state phase of VO2 from insulator to metallic phase. Therefore, the design structure could have wide range of potential THz technology related field applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太赫兹超材料吸收器的高度简化和可调吸收特性
这项工作证明了在太赫兹区域实现了高度简化和可调吸收特性的多波段吸收。该设计模型由一个h型谐振器置于中间层(介电介质)之上,底部为金属层组成。单尺寸谐振腔与入射电磁波强烈相互作用,产生四个接近完美的吸收峰,分别位于0.625 THz, 1.85 THz, 2.075 THz和2.5 THz。此外,通过在设计的超材料结构中插入二氧化钒(VO2)材料,研究了所建议的设计的主动调制特性,从而使四波段吸收曲线在VO2的状态相从绝缘体到金属相的变化中表现出可切换的功能。因此,该设计结构具有广泛的太赫兹技术相关领域应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
期刊最新文献
Dynamics of localized waves and interactions in a (2+1)-dimensional equation from combined bilinear forms of Kadomtsev–Petviashvili and extended shallow water wave equations Hamiltonian formulation for interfacial periodic waves propagating under an elastic sheet above stratified piecewise constant rotational flow Low mode interactions in water wave model in triangular domain Exotic coherent structures and their collisional dynamics in a (3+1) dimensional Bogoyavlensky–Konopelchenko equation Analytical and numerical study of plane progressive thermoacoustic shock waves in complex plasmas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1