Study on polymer-containing oily sludge as a potential fuel by combustion thermochemistry

Yuhao Cao , Mulin Zou , Aohan Ran , Peiying Zong , Zhaowei He , Xiang Gou
{"title":"Study on polymer-containing oily sludge as a potential fuel by combustion thermochemistry","authors":"Yuhao Cao ,&nbsp;Mulin Zou ,&nbsp;Aohan Ran ,&nbsp;Peiying Zong ,&nbsp;Zhaowei He ,&nbsp;Xiang Gou","doi":"10.1016/j.clwas.2024.100182","DOIUrl":null,"url":null,"abstract":"<div><div>The environmental and resource issues posed by oil sludge have sparked a renewed interest in cleaner and more efficient oil production. The investigation on the combustion process of polymer-containing oily sludge (POS) is expected to open up new markets for POS as an alternative fuel. TGA was used to examine the combustion behaviour, kinetics, and thermodynamics of POS, and X-ray fluorescence (XRF) was used to measure the chemical composition of POS ash to predict ash fouling and slagging. Based on the TG-DTG curves, the mass loss of POS in combustion studies was split into four major areas. The combined calculation method of model-free methods, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS), was applied to determine the activation energies from stage 1 to stage 4, which were 47.89 kJ/mol, 66.09 kJ/mol, 190.55 kJ/mol, and 98.37 kJ/mol, respectively. A four-stage kinetic model (D4→D2→D3→R2) was established to describe the combustion process of POS. Compared to other conventional sludges, POS has a relatively low activation energy and is more susceptible to thermochemical transformations. The difference between the enthalpy change (Δ<span><math><mi>H</mi></math></span>) and activation energy (<span><math><mi>E</mi></math></span>) indicated that the reactions benefit the formation of the activated complex. Meanwhile, the change in entropy (Δ<span><math><mi>S</mi></math></span>) implied the thermodynamic disequilibrium in the 3rd stage of POS and completion of the thermal conversion at the end of the reaction. The change in Gibbs free energy (Δ<em>G</em>) increased in a stepwise manner and its lower average value reflected the greater reaction favourability of combustion for POS. The composition of POS ash was mainly metal oxides, with the slagging index, fouling index, and slagging viscosity index of 1.0, 9.1, and 32.0, respectively. POS ash has high fouling and slagging, with special attention in the combustion application.</div></div>","PeriodicalId":100256,"journal":{"name":"Cleaner Waste Systems","volume":"9 ","pages":"Article 100182"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Waste Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772912524000551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The environmental and resource issues posed by oil sludge have sparked a renewed interest in cleaner and more efficient oil production. The investigation on the combustion process of polymer-containing oily sludge (POS) is expected to open up new markets for POS as an alternative fuel. TGA was used to examine the combustion behaviour, kinetics, and thermodynamics of POS, and X-ray fluorescence (XRF) was used to measure the chemical composition of POS ash to predict ash fouling and slagging. Based on the TG-DTG curves, the mass loss of POS in combustion studies was split into four major areas. The combined calculation method of model-free methods, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS), was applied to determine the activation energies from stage 1 to stage 4, which were 47.89 kJ/mol, 66.09 kJ/mol, 190.55 kJ/mol, and 98.37 kJ/mol, respectively. A four-stage kinetic model (D4→D2→D3→R2) was established to describe the combustion process of POS. Compared to other conventional sludges, POS has a relatively low activation energy and is more susceptible to thermochemical transformations. The difference between the enthalpy change (ΔH) and activation energy (E) indicated that the reactions benefit the formation of the activated complex. Meanwhile, the change in entropy (ΔS) implied the thermodynamic disequilibrium in the 3rd stage of POS and completion of the thermal conversion at the end of the reaction. The change in Gibbs free energy (ΔG) increased in a stepwise manner and its lower average value reflected the greater reaction favourability of combustion for POS. The composition of POS ash was mainly metal oxides, with the slagging index, fouling index, and slagging viscosity index of 1.0, 9.1, and 32.0, respectively. POS ash has high fouling and slagging, with special attention in the combustion application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
Mitigating landfill emissions strategies for effective waste management in tabuk Study on polymer-containing oily sludge as a potential fuel by combustion thermochemistry Synthesis and characterization of nano-Plaster of Paris from Babylonia japonica, Oliva sayana, and Conasprella bermudensis The future of waste management in Ghana: Assessing the feasibility and scalability of smart waste solutions amidst key adoption challenges Threads untangled: Regional mapping of post-consumer textile management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1