Diego Penaloza-Aponte , Sarabeth Brandt , Erin Dent , Robyn M. Underwood , Benedict DeMoras , Selina Bruckner , Margarita M. López-Uribe , Julio V. Urbina
{"title":"Automated entrance monitoring to investigate honey bee foraging trips using open-source wireless platform and fiducial tags","authors":"Diego Penaloza-Aponte , Sarabeth Brandt , Erin Dent , Robyn M. Underwood , Benedict DeMoras , Selina Bruckner , Margarita M. López-Uribe , Julio V. Urbina","doi":"10.1016/j.ohx.2024.e00609","DOIUrl":null,"url":null,"abstract":"<div><div>Honey bee foraging is a complex behavior because it involves tens of thousands of organisms making decisions about where to collect pollen and nectar based on the quality of resources and the distance to flowers. Studying this aspect of their biology is possible through direct observations but the large number of individuals involved in this behavior makes the implementation of technologies ideal to scale up this type of study. Consequently, there is a need for instruments that can facilitate accurate assessments of honey bee foraging at the colony level. To address this need, this work aimed to develop an automated imaging system for monitoring the in-and-out activity of honey bee foragers as they walk through a customized entrance with a camera sensor at the hive entrance. We used AprilTags attached to each bee’s thorax to provide unique identification numbers that allowed the system to track in-and-out events throughout the foraging season of the colony. Our design relies on low-cost Raspberry Pi computers and cameras, along with commercially off-the-shelf components, making it easily reproducible with the open-source documentation provided. We successfully deployed and evaluated our system in six locations, demonstrating consistent results. In this paper, we present the details about the development of the system, data collected from multiple colonies, and post-processing analysis from one of our apiaries. Our results highlight the system’s effectiveness in monitoring honey bee trips, capturing various behaviors associate with their activities outside the colony, which lay the groundwork for future estimations of foraging distances.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"20 ","pages":"Article e00609"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224001032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Honey bee foraging is a complex behavior because it involves tens of thousands of organisms making decisions about where to collect pollen and nectar based on the quality of resources and the distance to flowers. Studying this aspect of their biology is possible through direct observations but the large number of individuals involved in this behavior makes the implementation of technologies ideal to scale up this type of study. Consequently, there is a need for instruments that can facilitate accurate assessments of honey bee foraging at the colony level. To address this need, this work aimed to develop an automated imaging system for monitoring the in-and-out activity of honey bee foragers as they walk through a customized entrance with a camera sensor at the hive entrance. We used AprilTags attached to each bee’s thorax to provide unique identification numbers that allowed the system to track in-and-out events throughout the foraging season of the colony. Our design relies on low-cost Raspberry Pi computers and cameras, along with commercially off-the-shelf components, making it easily reproducible with the open-source documentation provided. We successfully deployed and evaluated our system in six locations, demonstrating consistent results. In this paper, we present the details about the development of the system, data collected from multiple colonies, and post-processing analysis from one of our apiaries. Our results highlight the system’s effectiveness in monitoring honey bee trips, capturing various behaviors associate with their activities outside the colony, which lay the groundwork for future estimations of foraging distances.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.