Fire-Image-DenseNet (FIDN) for predicting wildfire burnt area using remote sensing data

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-11-27 DOI:10.1016/j.cageo.2024.105783
Bo Pang , Sibo Cheng , Yuhan Huang , Yufang Jin , Yike Guo , I. Colin Prentice , Sandy P. Harrison , Rossella Arcucci
{"title":"Fire-Image-DenseNet (FIDN) for predicting wildfire burnt area using remote sensing data","authors":"Bo Pang ,&nbsp;Sibo Cheng ,&nbsp;Yuhan Huang ,&nbsp;Yufang Jin ,&nbsp;Yike Guo ,&nbsp;I. Colin Prentice ,&nbsp;Sandy P. Harrison ,&nbsp;Rossella Arcucci","doi":"10.1016/j.cageo.2024.105783","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting the extent of massive wildfires once ignited is essential to reduce the subsequent socioeconomic losses and environmental damage, but challenging because of the complexity of fire behavior. Existing physics-based models are limited in predicting large or long-duration wildfire events. Here, we develop a deep-learning-based predictive model, Fire-Image-DenseNet (FIDN), that uses spatial features derived from both near real-time and reanalysis data on the environmental and meteorological drivers of wildfire. We trained and tested this model using more than 300 individual wildfires that occurred between 2012 and 2019 in the western US. In contrast to existing models, the performance of FIDN does not degrade with fire size or duration. Furthermore, it predicts final burnt area accurately even in very heterogeneous landscapes in terms of fuel density and flammability. The FIDN model showed higher accuracy, with a mean squared error (MSE) about 82% and 67% lower than those of the predictive models based on cellular automata (CA) and the minimum travel time (MTT) approaches, respectively. Its structural similarity index measure (SSIM) averages 97%, outperforming the CA and FlamMap MTT models by 6% and 2%, respectively. Additionally, FIDN is approximately three orders of magnitude faster than both CA and MTT models. The enhanced computational efficiency and accuracy advancements offer vital insights for strategic planning and resource allocation for firefighting operations.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"195 ","pages":"Article 105783"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002668","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the extent of massive wildfires once ignited is essential to reduce the subsequent socioeconomic losses and environmental damage, but challenging because of the complexity of fire behavior. Existing physics-based models are limited in predicting large or long-duration wildfire events. Here, we develop a deep-learning-based predictive model, Fire-Image-DenseNet (FIDN), that uses spatial features derived from both near real-time and reanalysis data on the environmental and meteorological drivers of wildfire. We trained and tested this model using more than 300 individual wildfires that occurred between 2012 and 2019 in the western US. In contrast to existing models, the performance of FIDN does not degrade with fire size or duration. Furthermore, it predicts final burnt area accurately even in very heterogeneous landscapes in terms of fuel density and flammability. The FIDN model showed higher accuracy, with a mean squared error (MSE) about 82% and 67% lower than those of the predictive models based on cellular automata (CA) and the minimum travel time (MTT) approaches, respectively. Its structural similarity index measure (SSIM) averages 97%, outperforming the CA and FlamMap MTT models by 6% and 2%, respectively. Additionally, FIDN is approximately three orders of magnitude faster than both CA and MTT models. The enhanced computational efficiency and accuracy advancements offer vital insights for strategic planning and resource allocation for firefighting operations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fire-Image-DenseNet (FIDN),用于利用遥感数据预测野火燃烧面积
预测大规模野火一旦点燃的范围对于减少随后的社会经济损失和环境破坏至关重要,但由于火灾行为的复杂性,这一预测具有挑战性。现有的基于物理的模型在预测大型或长时间野火事件方面是有限的。在这里,我们开发了一个基于深度学习的预测模型,Fire-Image-DenseNet (FIDN),该模型使用了来自野火环境和气象驱动因素的近实时和再分析数据的空间特征。我们使用2012年至2019年在美国西部发生的300多起单独的野火来训练和测试这个模型。与现有模型相比,FIDN的性能不会随着火灾的大小或持续时间而下降。此外,即使在燃料密度和可燃性方面非常不均匀的景观中,它也能准确预测最终燃烧面积。与基于元胞自动机(CA)和最小旅行时间(MTT)方法的预测模型相比,FIDN模型的均方误差(MSE)分别降低了82%和67%。其结构相似指数(SSIM)平均为97%,分别比CA和FlamMap MTT模型高出6%和2%。此外,FIDN比CA和MTT模型都快大约三个数量级。计算效率和准确性的提高为消防行动的战略规划和资源分配提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Editorial Board ScoreInver: 3D seismic impedance inversion based on scoring mechanism Hybrid Newton method for the acceleration of well event handling in the simulation of CO2 storage using supervised learning Linear filter theory for the forward Laplace transform and its use in calculating 1D EM responses Deep learning contribution to the automatic picking of surface-wave dispersion for the characterization of railway earthworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1