A new 3D vision-based leaf rolling index (LRI) and its application as a stable indicator of cotton drought stress

IF 5.9 1区 农林科学 Q1 AGRONOMY Agricultural Water Management Pub Date : 2024-11-30 DOI:10.1016/j.agwat.2024.109174
Hangxing Huang , Jian Kang , Jinliang Chen , Risheng Ding , Hongna Lu , Siyu Wu , Shaozhong Kang
{"title":"A new 3D vision-based leaf rolling index (LRI) and its application as a stable indicator of cotton drought stress","authors":"Hangxing Huang ,&nbsp;Jian Kang ,&nbsp;Jinliang Chen ,&nbsp;Risheng Ding ,&nbsp;Hongna Lu ,&nbsp;Siyu Wu ,&nbsp;Shaozhong Kang","doi":"10.1016/j.agwat.2024.109174","DOIUrl":null,"url":null,"abstract":"<div><div>The leaf rolling index (LRI) is a phenotype with significant physiological implications under drought stress. However, research on the quantification of the cotton LRI is lacking, limiting its application in drought diagnosis, irrigation guidance, and physiological assessments. This study conducted a 3D reconstruction of cotton using Structure from Motion (SFM) and Multi-View Stereo (MVS). Algorithms for leaf point cloud preprocessing and phenotype extraction were developed using the PCL point cloud library and integrated into software to calculate the leaf area and perimeter. The LRI was quantified in 3D space based on the point cloud area ratio. On this basis, we analyze the relationships between LRI and leaf physiological indicators such as leaf water potential (LWP), relative water content (RWC), stomatal conductance (g<sub>s</sub>), and electron transport rate (ETR) at the seedling and flowering stages. The results indicate that the cotton LRI provides a stable indicator of drought stress, which is mainly reflected in the stable correlation between the LRI and water physiological parameters (LWP, and RWC), with coefficients of determination (R²) exceeding 0.70. Furthermore, the correlation between the LRI and the ETR suggests that the LRI could be used to assess photosynthetic efficiency under drought stress. This study demonstrates that LRI based on 3D vision in cotton may serve as a reliable morphological indicator for indicating drought stress and evaluating photosynthetic efficiency.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"306 ","pages":"Article 109174"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377424005109","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The leaf rolling index (LRI) is a phenotype with significant physiological implications under drought stress. However, research on the quantification of the cotton LRI is lacking, limiting its application in drought diagnosis, irrigation guidance, and physiological assessments. This study conducted a 3D reconstruction of cotton using Structure from Motion (SFM) and Multi-View Stereo (MVS). Algorithms for leaf point cloud preprocessing and phenotype extraction were developed using the PCL point cloud library and integrated into software to calculate the leaf area and perimeter. The LRI was quantified in 3D space based on the point cloud area ratio. On this basis, we analyze the relationships between LRI and leaf physiological indicators such as leaf water potential (LWP), relative water content (RWC), stomatal conductance (gs), and electron transport rate (ETR) at the seedling and flowering stages. The results indicate that the cotton LRI provides a stable indicator of drought stress, which is mainly reflected in the stable correlation between the LRI and water physiological parameters (LWP, and RWC), with coefficients of determination (R²) exceeding 0.70. Furthermore, the correlation between the LRI and the ETR suggests that the LRI could be used to assess photosynthetic efficiency under drought stress. This study demonstrates that LRI based on 3D vision in cotton may serve as a reliable morphological indicator for indicating drought stress and evaluating photosynthetic efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
期刊最新文献
Drought risk assessment for citrus and its mitigation resistance under climate change and crop specialization: A case study of southern Jiangxi, China A new 3D vision-based leaf rolling index (LRI) and its application as a stable indicator of cotton drought stress CMIP6 multi-model ensemble projection of reference evapotranspiration using machine learning algorithms Stem characteristics and yield of wheat is regulated to improve planting efficiency and reduce lodging risk by fertilizer rate and irrigation stage A coupled model of zebra mussels and chlorine in collective pressurized irrigation networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1