CMIP6 multi-model ensemble projection of reference evapotranspiration using machine learning algorithms

IF 5.9 1区 农林科学 Q1 AGRONOMY Agricultural Water Management Pub Date : 2024-11-30 DOI:10.1016/j.agwat.2024.109190
Milad Nouri , Shadman Veysi
{"title":"CMIP6 multi-model ensemble projection of reference evapotranspiration using machine learning algorithms","authors":"Milad Nouri ,&nbsp;Shadman Veysi","doi":"10.1016/j.agwat.2024.109190","DOIUrl":null,"url":null,"abstract":"<div><div>Changes in reference crop evapotranspiration (ET<sub>o</sub>) due to climate change (CC) can severely impact food and water security, emphasizing the need for integrating ET<sub>o</sub> projections into agricultural water management strategies. In this study, ET<sub>o</sub> changes were projected for two future time slices with respect to the baseline using several machine learning techniques, incorporating minimum and maximum temperature, diurnal temperature range, and extraterrestrial radiation across Iran. Additionally, an ensemble of 10 CMIP6 Global Climate Models, downscaled by the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6), was employed. The X-means clustering algorithm was also exploited to classify ET<sub>o</sub> based on various characteristics, including minimum, maximum, average, skewness, and standard deviation, as well as ET<sub>o</sub> ranges of 0–5, 5–10, and greater than 10 mm d⁻¹. This clustering approach divided the study area into five distinct clusters. Apart from cluster I, where the Support Vector Machine outperformed, the Random Forest technique provided more accurate ET<sub>o</sub> predictions. The findings project an average ET<sub>o</sub> increase of 4.8 % and 5.3 % during 2030–2049, and 8.0 % and 13.3 % for 2080–2099 under SSP245 and SSP585, respectively. Geographically, the highest ET<sub>o</sub> increases are anticipated primarily in the northern and western parts of the country, predominantly within clusters I and II. Notably, the ET<sub>o</sub> rise will exceed 40 % relative to the baseline during the late century under the SSP585. Furthermore, the most significant ET<sub>o</sub> increment is expected during winter. Future projections also indicate that cluster V, which already experiences significant daily ET<sub>o</sub> peaks, will face even more ET<sub>o</sub> extremes. Given the critical importance of these regions for sustaining food and water security and preserving natural resources, the substantial rise in ET<sub>o</sub> under future CC poses a significant threat to natural sustainability in Iran. This highlights the critical necessity for adaptive strategies in agricultural water management to mitigate the adverse CC effects. In this context, the current findings can assist decision-makers in identifying hotspots and quantifying CC impacts, thereby enabling the design of crucial adaptations.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"306 ","pages":"Article 109190"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377424005262","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in reference crop evapotranspiration (ETo) due to climate change (CC) can severely impact food and water security, emphasizing the need for integrating ETo projections into agricultural water management strategies. In this study, ETo changes were projected for two future time slices with respect to the baseline using several machine learning techniques, incorporating minimum and maximum temperature, diurnal temperature range, and extraterrestrial radiation across Iran. Additionally, an ensemble of 10 CMIP6 Global Climate Models, downscaled by the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6), was employed. The X-means clustering algorithm was also exploited to classify ETo based on various characteristics, including minimum, maximum, average, skewness, and standard deviation, as well as ETo ranges of 0–5, 5–10, and greater than 10 mm d⁻¹. This clustering approach divided the study area into five distinct clusters. Apart from cluster I, where the Support Vector Machine outperformed, the Random Forest technique provided more accurate ETo predictions. The findings project an average ETo increase of 4.8 % and 5.3 % during 2030–2049, and 8.0 % and 13.3 % for 2080–2099 under SSP245 and SSP585, respectively. Geographically, the highest ETo increases are anticipated primarily in the northern and western parts of the country, predominantly within clusters I and II. Notably, the ETo rise will exceed 40 % relative to the baseline during the late century under the SSP585. Furthermore, the most significant ETo increment is expected during winter. Future projections also indicate that cluster V, which already experiences significant daily ETo peaks, will face even more ETo extremes. Given the critical importance of these regions for sustaining food and water security and preserving natural resources, the substantial rise in ETo under future CC poses a significant threat to natural sustainability in Iran. This highlights the critical necessity for adaptive strategies in agricultural water management to mitigate the adverse CC effects. In this context, the current findings can assist decision-makers in identifying hotspots and quantifying CC impacts, thereby enabling the design of crucial adaptations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
期刊最新文献
Drought risk assessment for citrus and its mitigation resistance under climate change and crop specialization: A case study of southern Jiangxi, China A new 3D vision-based leaf rolling index (LRI) and its application as a stable indicator of cotton drought stress CMIP6 multi-model ensemble projection of reference evapotranspiration using machine learning algorithms Stem characteristics and yield of wheat is regulated to improve planting efficiency and reduce lodging risk by fertilizer rate and irrigation stage A coupled model of zebra mussels and chlorine in collective pressurized irrigation networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1