Microstructure and ablation resistance of C/C-HfC-SiC composites prepared by RMI with different powder particle sizes

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-12-01 DOI:10.1016/j.matchar.2024.114577
Zhiqiang Liu, Yifan Sun, Shubo Zhang, Yawen Wang, Luncheng Tang, Tian Li, Qiangang Fu, Yujun Jia
{"title":"Microstructure and ablation resistance of C/C-HfC-SiC composites prepared by RMI with different powder particle sizes","authors":"Zhiqiang Liu,&nbsp;Yifan Sun,&nbsp;Shubo Zhang,&nbsp;Yawen Wang,&nbsp;Luncheng Tang,&nbsp;Tian Li,&nbsp;Qiangang Fu,&nbsp;Yujun Jia","doi":"10.1016/j.matchar.2024.114577","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the ablation and scouring resistance of C/C composites, powder with particle sizes of 0.5–1 μm, 1–3 μm and 10–20 μm were used as infiltration powder to prepare C/C-HfC-SiC composites, named HSV-0.5-1, HSV-1-3 and HSV-10-20, respectively. Results show that the agglomeration of the powder makes it difficult to form a uniform and dense ceramic layer on the sample surface. The content of HfC ceramics increases with the particle size of the initial powder. In addition, the grain size of HfC first increases and then becomes irregularly spherical as the initial powder particle size increases. After ablation for 40s, HSV-1-3 shows the best resistance to ablation due to the mixed crystal form of flakes and spheres that form a denser oxide film in the center of the ablation. In three subsequent room-temperature airflow scour tests, the oxide film of HSV-1-3 and HSV-10-20 were damaged in the sample surface. After following ablation for 40 s, HSV-10-20 showed good ablation resistance with the linear ablation of −0.75 μm/s. The reason is the high HfC content and dense ceramic layer contribute to the formation of a continuous and complete oxide layer that prevents oxygen diffusion during ablation. This work provides guidance on the use of particle size in the RMI.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114577"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009586","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the ablation and scouring resistance of C/C composites, powder with particle sizes of 0.5–1 μm, 1–3 μm and 10–20 μm were used as infiltration powder to prepare C/C-HfC-SiC composites, named HSV-0.5-1, HSV-1-3 and HSV-10-20, respectively. Results show that the agglomeration of the powder makes it difficult to form a uniform and dense ceramic layer on the sample surface. The content of HfC ceramics increases with the particle size of the initial powder. In addition, the grain size of HfC first increases and then becomes irregularly spherical as the initial powder particle size increases. After ablation for 40s, HSV-1-3 shows the best resistance to ablation due to the mixed crystal form of flakes and spheres that form a denser oxide film in the center of the ablation. In three subsequent room-temperature airflow scour tests, the oxide film of HSV-1-3 and HSV-10-20 were damaged in the sample surface. After following ablation for 40 s, HSV-10-20 showed good ablation resistance with the linear ablation of −0.75 μm/s. The reason is the high HfC content and dense ceramic layer contribute to the formation of a continuous and complete oxide layer that prevents oxygen diffusion during ablation. This work provides guidance on the use of particle size in the RMI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Microstructure and ablation resistance of C/C-HfC-SiC composites prepared by RMI with different powder particle sizes Simultaneous enhancement of the strength and plasticity of Fe12Mn steel through modulating grain morphology Ex-situ observation of ferrite grain growth behavior in a welded 9Cr-1Mo-V-Nb steel during aging at 740 °C Effect of warm rolling on microstructure evolution and mechanical properties of a Ni–W–Co–Ta medium-heavy alloy Effect of ball milling on densification and alloying in SiCp/Al powder metallurgy processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1