Biocontrol activity and action mechanism of Pseudomonas aurantiaca ST-TJ4 against Verticillium dahliae, the causal agent of Acer truncatum wilt

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pesticide Biochemistry and Physiology Pub Date : 2024-11-27 DOI:10.1016/j.pestbp.2024.106224
Liang-Liang Hou , Wei-Liang Kong , Xiao-Qin Wu
{"title":"Biocontrol activity and action mechanism of Pseudomonas aurantiaca ST-TJ4 against Verticillium dahliae, the causal agent of Acer truncatum wilt","authors":"Liang-Liang Hou ,&nbsp;Wei-Liang Kong ,&nbsp;Xiao-Qin Wu","doi":"10.1016/j.pestbp.2024.106224","DOIUrl":null,"url":null,"abstract":"<div><div><em>Acer truncatum</em> wilt caused by <em>Verticillium dahliae</em> is a severe soilborne disease that poses a threat to the cultivation of this plant in China. The present study explored the biocontrol efficiency and underlying antagonistic mechanism of <em>Pseudomonas aurantiaca</em> ST-TJ4 against <em>V. dahliae</em>. In vitro, strain ST-TJ4 exhibited excellent inhibitory effects on <em>V. dahliae</em>, causing mycelial deformation. This strain significantly suppressed the production of <em>V. dahliae</em> conidia and microsclerotia<em>.</em> Moreover, the application of ST-TJ4 reduced the incidence of <em>Verticillium</em> wilt in <em>A. truncatum</em> saplings in both the prevention group and the cure group. Comparative transcriptomic analyses revealed that ST-TJ4 induced differential expression of numerous genes in <em>V. dahliae</em>, most of which were downregulated. These differentially expressed genes were associated with cell wall-degrading enzyme activity, sterol biosynthetic processes, glutathione S-transferase activity, iron ion and sugar metabolism, and oxidoreductase activity. Further transcriptomic analyses of physiological indices indicated that ST-TJ4 significantly inhibited the synthesis of pectin lyase, <em>endo</em>-β-1,4-glucanase, melanin and soluble sugars of <em>V. dahliae</em> and had a stronger inhibitory effect under iron deficiency. Taken together, these data highlight <em>P. aurantiaca</em> ST-TJ4 as a promising biocontrol agent against <em>A. truncatum</em> Verticillium wilt.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"207 ","pages":"Article 106224"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524004577","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acer truncatum wilt caused by Verticillium dahliae is a severe soilborne disease that poses a threat to the cultivation of this plant in China. The present study explored the biocontrol efficiency and underlying antagonistic mechanism of Pseudomonas aurantiaca ST-TJ4 against V. dahliae. In vitro, strain ST-TJ4 exhibited excellent inhibitory effects on V. dahliae, causing mycelial deformation. This strain significantly suppressed the production of V. dahliae conidia and microsclerotia. Moreover, the application of ST-TJ4 reduced the incidence of Verticillium wilt in A. truncatum saplings in both the prevention group and the cure group. Comparative transcriptomic analyses revealed that ST-TJ4 induced differential expression of numerous genes in V. dahliae, most of which were downregulated. These differentially expressed genes were associated with cell wall-degrading enzyme activity, sterol biosynthetic processes, glutathione S-transferase activity, iron ion and sugar metabolism, and oxidoreductase activity. Further transcriptomic analyses of physiological indices indicated that ST-TJ4 significantly inhibited the synthesis of pectin lyase, endo-β-1,4-glucanase, melanin and soluble sugars of V. dahliae and had a stronger inhibitory effect under iron deficiency. Taken together, these data highlight P. aurantiaca ST-TJ4 as a promising biocontrol agent against A. truncatum Verticillium wilt.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
期刊最新文献
Comparation of pheromone-binding proteins 1 and 2 of Spodoptera frugiperda in perceiving the three sex pheromone components Z9-14:Ac, Z7-12: Ac and Z11-16: Ac The function of HgLac in Heterodera glycines and its potential as a control target C-type lectin 9 participates in the immune response, development and reproduction of Tribolium castaneum Biocontrol activity and action mechanism of Pseudomonas aurantiaca ST-TJ4 against Verticillium dahliae, the causal agent of Acer truncatum wilt Exploration of the transfluthrin effects on fertility and pregnancy outcomes: An in-vivo study in rat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1