Improved mobility in InAs nanowire FETs with sulfur-based surface treatment

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Applied Physics Pub Date : 2024-11-26 DOI:10.1016/j.cap.2024.11.015
Yen Hsueh Wu , Hong Hyuk Kim , Jae Cheol Shin
{"title":"Improved mobility in InAs nanowire FETs with sulfur-based surface treatment","authors":"Yen Hsueh Wu ,&nbsp;Hong Hyuk Kim ,&nbsp;Jae Cheol Shin","doi":"10.1016/j.cap.2024.11.015","DOIUrl":null,"url":null,"abstract":"<div><div>InAs exhibits high electron mobility, positioning it as a promising candidate for advanced nanoelectronic device materials. Specifically, nanowire structures are particularly advantageous for electronic device applications, offering benefits such as reduced leakage current and minimized short-channel effects due to their distinctive one-dimensional electron transport characteristics. However, the large surface-to-volume ratio of the nanowires not only significantly degrades their electrical properties but also complicates the formation of semiconductor-metal ohmic contacts. In this study, surface treatments involving sulfur and (NH<sub>4</sub>)<sub>2</sub>S, along with rapid thermal annealing (RTA) processes, were applied to mitigate these disadvantages, resulting in a marked enhancement of the electrical properties of InAs nanowires. The electron mobility of the InAs nanowires was elevated from 83.06 cm<sup>2</sup>/V·s to 292.718 cm<sup>2</sup>/V·s through the application of passivation and RTA processes.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"70 ","pages":"Pages 81-86"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002530","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

InAs exhibits high electron mobility, positioning it as a promising candidate for advanced nanoelectronic device materials. Specifically, nanowire structures are particularly advantageous for electronic device applications, offering benefits such as reduced leakage current and minimized short-channel effects due to their distinctive one-dimensional electron transport characteristics. However, the large surface-to-volume ratio of the nanowires not only significantly degrades their electrical properties but also complicates the formation of semiconductor-metal ohmic contacts. In this study, surface treatments involving sulfur and (NH4)2S, along with rapid thermal annealing (RTA) processes, were applied to mitigate these disadvantages, resulting in a marked enhancement of the electrical properties of InAs nanowires. The electron mobility of the InAs nanowires was elevated from 83.06 cm2/V·s to 292.718 cm2/V·s through the application of passivation and RTA processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
期刊最新文献
Editorial Board Synergistic impact of Al2O3 capping layer and deposition temperature for enhancing the ferroelectricity of undoped-HfO2 thin films Improved mobility in InAs nanowire FETs with sulfur-based surface treatment Graphene/WS2/LaVO3 heterojunction for self-powered, high-speed, and broadband photodetectors Oxidation effects on the optical and electrical properties of MoS2 under controlled baking temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1