Fabrication of micro holes with confined pitting corrosion by laser and electrochemical machining: Pitting corrosion formation mechanisms and protection method
Jian Yang , Yufeng Wang , Yong Yang , Yunfeng Liu , Wenwu Zhang
{"title":"Fabrication of micro holes with confined pitting corrosion by laser and electrochemical machining: Pitting corrosion formation mechanisms and protection method","authors":"Jian Yang , Yufeng Wang , Yong Yang , Yunfeng Liu , Wenwu Zhang","doi":"10.1016/j.jmatprotec.2024.118677","DOIUrl":null,"url":null,"abstract":"<div><div>Laser and electrochemical hybrid machining (LECM) combines the advantages of high efficiency of laser processing and high surface quality of electrochemical machining and has been employed to process deep micro holes with high surface quality, high precision, and efficiency. However, surface pitting corrosion occurs around the entrance of the micro holes drilled by LECM, which deteriorates their surface quality and mechanical properties. This study revealed the mechanism of surface pitting corrosion formation mechanisms during LECM by characterizing surface micromorphology, chemical composition, microstructures, and surface stress. The difference between surface pitting corrosion area during LECM and the stray current corrosion during electrochemical machining was studied. Micro solid metal particles and inner microcavities were observed in micro pits. The depth of the micro pits was greater than that obtained using electrochemical machining. It has been concluded that in LECM, the surface pitting corrosion occurred owing to the enhanced stray current corrosion and the accumulation of solidified melt particles and cavitation microbubbles in the micro pits. Coaxial gas-assisted LECM was also proposed to restrict the surface pitting corrosion area. Experiments and simulations were conducted to verify the feasibility of minimizing the corrosion area using coaxial gas. The surface pitting corrosion area has been decreased by 85.1 % at a coaxial gas pressure of 0.1 MPa compared with that without coaxial gas assistance. Finally, the radial cooling holes with a diameter of 1.2 mm and an aspect ratio of 125:1 in turbine blades with high surface quality were fabricated. This study provides a promising method to fabricate high-aspect-ratio micro-holes with high surface quality and high efficiency.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"335 ","pages":"Article 118677"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624003959","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Laser and electrochemical hybrid machining (LECM) combines the advantages of high efficiency of laser processing and high surface quality of electrochemical machining and has been employed to process deep micro holes with high surface quality, high precision, and efficiency. However, surface pitting corrosion occurs around the entrance of the micro holes drilled by LECM, which deteriorates their surface quality and mechanical properties. This study revealed the mechanism of surface pitting corrosion formation mechanisms during LECM by characterizing surface micromorphology, chemical composition, microstructures, and surface stress. The difference between surface pitting corrosion area during LECM and the stray current corrosion during electrochemical machining was studied. Micro solid metal particles and inner microcavities were observed in micro pits. The depth of the micro pits was greater than that obtained using electrochemical machining. It has been concluded that in LECM, the surface pitting corrosion occurred owing to the enhanced stray current corrosion and the accumulation of solidified melt particles and cavitation microbubbles in the micro pits. Coaxial gas-assisted LECM was also proposed to restrict the surface pitting corrosion area. Experiments and simulations were conducted to verify the feasibility of minimizing the corrosion area using coaxial gas. The surface pitting corrosion area has been decreased by 85.1 % at a coaxial gas pressure of 0.1 MPa compared with that without coaxial gas assistance. Finally, the radial cooling holes with a diameter of 1.2 mm and an aspect ratio of 125:1 in turbine blades with high surface quality were fabricated. This study provides a promising method to fabricate high-aspect-ratio micro-holes with high surface quality and high efficiency.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.