Design of China first pilot plant for supercritical hydrothermal synthesis of AgNPs

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-12-01 DOI:10.1016/j.cherd.2024.11.037
Hui Liu , Shuzhong Wang , Risheng Zhuo , Wenjin Zhang , Yuanwang Duan , Xuetao Deng , Junan Zhao , Jianqiao Yang , Lu Liu , Yanhui Li , Jie Zhang
{"title":"Design of China first pilot plant for supercritical hydrothermal synthesis of AgNPs","authors":"Hui Liu ,&nbsp;Shuzhong Wang ,&nbsp;Risheng Zhuo ,&nbsp;Wenjin Zhang ,&nbsp;Yuanwang Duan ,&nbsp;Xuetao Deng ,&nbsp;Junan Zhao ,&nbsp;Jianqiao Yang ,&nbsp;Lu Liu ,&nbsp;Yanhui Li ,&nbsp;Jie Zhang","doi":"10.1016/j.cherd.2024.11.037","DOIUrl":null,"url":null,"abstract":"<div><div>Supercritical hydrothermal synthesis (SCHS) is an eco-friendly and efficient method for synthesizing nanomaterials. China's first pilot plant for SCHS of silver nanoparticles (AgNPs) has been successfully built, producing AgNPs with controllable particle sizes through reactor and system optimizations. This manuscript systematically explores the challenges of low heating and mixing efficiency and clogging, and proposes targeted solutions, including efficient warming, heat reuse and mixer structure optimisation. The detailed system components, evident properties, advanced control methods and primary experiment results of the pilot scale plant are described objectively, achieving high-purity AgNPs with an average particle size of 36.1 nm. These findings will contribute to the commercialisation of the SCHS pilot plant for continuous batch production of nanoparticles.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 569-577"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224006683","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Supercritical hydrothermal synthesis (SCHS) is an eco-friendly and efficient method for synthesizing nanomaterials. China's first pilot plant for SCHS of silver nanoparticles (AgNPs) has been successfully built, producing AgNPs with controllable particle sizes through reactor and system optimizations. This manuscript systematically explores the challenges of low heating and mixing efficiency and clogging, and proposes targeted solutions, including efficient warming, heat reuse and mixer structure optimisation. The detailed system components, evident properties, advanced control methods and primary experiment results of the pilot scale plant are described objectively, achieving high-purity AgNPs with an average particle size of 36.1 nm. These findings will contribute to the commercialisation of the SCHS pilot plant for continuous batch production of nanoparticles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
Corrigendum to “Enhanced DeNOx catalysis: Induction-heating-catalysis-ready 3D stable Ni supported metal combinations” [Chem. Eng. Res. Des. 207 (2024) 404–419] Cu-Ni synergy in physicochemical properties of the Mg-Al oxides matrix to selective glycerol carbonate production Design of China first pilot plant for supercritical hydrothermal synthesis of AgNPs A high performance of thin film composite based on dextran substrate for effective removal of heavy metal ions Accelerating catalytic experimentation of water gas shift reaction using machine learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1