Mortality patterns and recovery challenges in Millepora alcicornis after mass bleaching event on Northeast Brazilian reefs

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2024-11-22 DOI:10.1016/j.marenvres.2024.106864
Thales Jean Vidal , Nelson de Almeida Gouveia , Marius Nils Müller , Camila Brasil Louro da Silveira , Mauro Maida , Beatrice Padovani Ferreira
{"title":"Mortality patterns and recovery challenges in Millepora alcicornis after mass bleaching event on Northeast Brazilian reefs","authors":"Thales Jean Vidal ,&nbsp;Nelson de Almeida Gouveia ,&nbsp;Marius Nils Müller ,&nbsp;Camila Brasil Louro da Silveira ,&nbsp;Mauro Maida ,&nbsp;Beatrice Padovani Ferreira","doi":"10.1016/j.marenvres.2024.106864","DOIUrl":null,"url":null,"abstract":"<div><div>Coral reefs are suffering globally from the increased frequency and intensification of thermal anomalies, caused by anthropogenic climate change, leading to major mass bleaching events over the past three decades. Environmental factors, including temperature, geomorphology, interspecific competition, protection status and local settings, can modulate the severity of bleaching and the subsequent survival capacity of corals and hydrocorals after mass bleaching events. However, the complexity of environmental factors interacting over fine-scale spatial-temporal scales is still a major gap in understanding coral bleaching events of South Atlantic reefs. Here, we examined mortality and recovery patterns of the predominant hydrocoral species <em>Millepora alcicornis</em> after a mass bleaching event at the Northeastern coast of Brazil in 2019–2020. The ecological impact was evaluated by analyzing spatial factors, coral morphology, protection status and mortality rates in combination with the subsequent recovery potential influenced by overgrowth competition of dominant benthic organisms. The results indicate that hydrocorals located in proximity to the shore and shallow depths were more vulnerable with mortality rates of up to 90%, presumably related to higher light and temperature fluctuations. A total coral cover loss of approx. 50% was estimated for <em>M. alcicornis</em> within the study area and dead skeletons were overgrown by algal turfs and crustose coralline algae with the former being the predominant colonizer. In summary, our findings reveal fin-scale heterogeneous spatial vulnerability within the same coastal reef complex, indicating zones of high coral mortality. The described heterogeneous spatial vulnerability of the studied reef complex is an important factor to be considered in coral reef restauration and management plans to secure coral ecosystem services for the coming decades.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"Article 106864"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624005257","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Coral reefs are suffering globally from the increased frequency and intensification of thermal anomalies, caused by anthropogenic climate change, leading to major mass bleaching events over the past three decades. Environmental factors, including temperature, geomorphology, interspecific competition, protection status and local settings, can modulate the severity of bleaching and the subsequent survival capacity of corals and hydrocorals after mass bleaching events. However, the complexity of environmental factors interacting over fine-scale spatial-temporal scales is still a major gap in understanding coral bleaching events of South Atlantic reefs. Here, we examined mortality and recovery patterns of the predominant hydrocoral species Millepora alcicornis after a mass bleaching event at the Northeastern coast of Brazil in 2019–2020. The ecological impact was evaluated by analyzing spatial factors, coral morphology, protection status and mortality rates in combination with the subsequent recovery potential influenced by overgrowth competition of dominant benthic organisms. The results indicate that hydrocorals located in proximity to the shore and shallow depths were more vulnerable with mortality rates of up to 90%, presumably related to higher light and temperature fluctuations. A total coral cover loss of approx. 50% was estimated for M. alcicornis within the study area and dead skeletons were overgrown by algal turfs and crustose coralline algae with the former being the predominant colonizer. In summary, our findings reveal fin-scale heterogeneous spatial vulnerability within the same coastal reef complex, indicating zones of high coral mortality. The described heterogeneous spatial vulnerability of the studied reef complex is an important factor to be considered in coral reef restauration and management plans to secure coral ecosystem services for the coming decades.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
Corrigendum to "Long-term warming and acidification interaction drives plastic acclimation in the diatom Pseudo-nitzschia multiseries" [Mar. Environ. Res. 204 (2025) 106901]. Effect of marine anoxia on the conversion of macroalgal biomass to refractory dissolved organic carbon. Gradient experiment reveals physiological stress from heavy metal zinc on the economically valuable seaweed Sargassum fusiforme. Microscale intertidal habitats modulate shell break resistance of the prey; Implications for prey selection. Multi-interacting global-change drivers reduce photosynthetic and resource use efficiencies and prompt a microzooplankton-phytoplankton uncoupling in estuarine communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1