Enhanced photo-thermal conversion in phase change materials by Cu-Zn Bi-metallic metal-organic framework and expanded graphite

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-11-28 DOI:10.1016/j.solmat.2024.113326
Jianbo Ren , Tao Hu , Wenbo Zhang , Li Li , Wenhui Yuan
{"title":"Enhanced photo-thermal conversion in phase change materials by Cu-Zn Bi-metallic metal-organic framework and expanded graphite","authors":"Jianbo Ren ,&nbsp;Tao Hu ,&nbsp;Wenbo Zhang ,&nbsp;Li Li ,&nbsp;Wenhui Yuan","doi":"10.1016/j.solmat.2024.113326","DOIUrl":null,"url":null,"abstract":"<div><div>Photothermal phase change materials (PCM) are employed for the efficient conversion and storage of solar energy. In this work, a Cu-Zn bi-metallic metal-organic framework (MOF) was synthesized and combined with expanded graphite (EG), followed by high-temperature carbonization to prepare the supporting material for polyethylene glycol (PEG). Through the high-temperature carbonization process, nano-metallic copper is uniformly dispersed on the surface of the EG, accompanied by the formation of a new porous structure resulting from the evaporation of Zn vapour. The nano metallic copper particles enhance the thermal conductivity and photo-thermal conversion efficiency of the composite PCM, while the porous structure generated by Zn vapour improves the adsorption capacity of PEG. The composite PCM demonstrated a high phase change enthalpy of 174.6 J/g and excellent thermal reliability, with only a 2.29 % reduction in enthalpy after 200 melting-freezing cycles. Additionally, the thermal conductivity of the composite PCM reached 6.096 W/(m·K) which is 26.1 times higher than that of pure PEG, while the photo-thermal conversion efficiency achieved was 88.69 %. These properties indicate that the PEG/EG/Cu-Zn-MOF derived carbon composite PCM has great potential for applications in solar energy storage and conversion.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"281 ","pages":"Article 113326"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702482400638X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Photothermal phase change materials (PCM) are employed for the efficient conversion and storage of solar energy. In this work, a Cu-Zn bi-metallic metal-organic framework (MOF) was synthesized and combined with expanded graphite (EG), followed by high-temperature carbonization to prepare the supporting material for polyethylene glycol (PEG). Through the high-temperature carbonization process, nano-metallic copper is uniformly dispersed on the surface of the EG, accompanied by the formation of a new porous structure resulting from the evaporation of Zn vapour. The nano metallic copper particles enhance the thermal conductivity and photo-thermal conversion efficiency of the composite PCM, while the porous structure generated by Zn vapour improves the adsorption capacity of PEG. The composite PCM demonstrated a high phase change enthalpy of 174.6 J/g and excellent thermal reliability, with only a 2.29 % reduction in enthalpy after 200 melting-freezing cycles. Additionally, the thermal conductivity of the composite PCM reached 6.096 W/(m·K) which is 26.1 times higher than that of pure PEG, while the photo-thermal conversion efficiency achieved was 88.69 %. These properties indicate that the PEG/EG/Cu-Zn-MOF derived carbon composite PCM has great potential for applications in solar energy storage and conversion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光热相变材料(PCM)可用于高效转换和储存太阳能。在这项工作中,合成了铜锌双金属金属有机框架(MOF),并将其与膨胀石墨(EG)结合,然后进行高温碳化,制备出聚乙二醇(PEG)的支撑材料。通过高温碳化过程,纳米金属铜均匀地分散在 EG 表面,同时由于 Zn 蒸汽的蒸发形成了新的多孔结构。纳米金属铜颗粒提高了复合 PCM 的热导率和光热转换效率,而 Zn 蒸汽产生的多孔结构提高了 PEG 的吸附能力。复合 PCM 的相变焓高达 174.6 J/g,热稳定性极佳,在 200 次融化-冷冻循环后焓仅降低 2.29%。此外,复合 PCM 的热导率达到 6.096 W/(m-K),是纯 PEG 的 26.1 倍,光热转换效率达到 88.69%。这些特性表明,PEG/EG/Cu-Zn-MOF 衍生的碳复合 PCM 在太阳能储存和转换方面具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Electric-field-induced aging dynamics of triple-cation lead iodide perovskite at nanoscale Fabrication and characterization of high performance sub-millimetric InGaP/InGaAs/Ge solar cells Experimental comparison and 6E analyses of double-ended evacuated tube collector based atmospheric water harvesting with and without PCM Editorial Board Hydrodynamic and reaction kinetic responses of CaO/CaCO3 carbonation in bubbling fluidized bed reactors for thermochemical energy storage: Influence of CO2 mole fraction, grain size, and reactor dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1