{"title":"Green extraction of natural indigoid from Baphicacanthus cusia (Nees) Bremek using hydrophilic and hydrophobic deep eutectic solvent technology","authors":"Patteera Aoonboontum , Pattravee Thong-on , Nakuntwalai Wisidsri , Suradwadee Thugmangmee , Tammanoon Rungsang , Nanthaka Khorana , Jukkarin Srivilai","doi":"10.1016/j.nxsust.2024.100090","DOIUrl":null,"url":null,"abstract":"<div><div>This study focused on the development of an alternative and more environmentally friendly extraction solvent, a deep eutectic system (DES), for extracting indigoid pigments, specifically indigo and indirubin, from <em>Baphicacanthus cusia</em> (BC). BC is recognized in the textile industry as a natural vat dye and in traditional Chinese medicine as \"Qing-Dai\". It is known for treating inflammatory diseases such as psoriasis. In this study, 46 DES systems were compared with conventional methods. The hydrophobic DES, a terpenoid and fatty acid system comprising thymol:decanoic acid (DES40), and the hydrophilic DES, a choline chloride-based system comprising choline chloride: <em>p</em>-toluenesulfonic acid (DES19), showed significant extraction improvements. DES40 and DES19 achieved approximately 26-fold higher indigo content compared to classical ethanol and outperformed the harsh organic solvent dichloromethane. The green extraction process was optimized using a Box–Behnken design, considering parameters such as temperature, time and co-solvent. DES19 maximized indigo and indirubin content to 270.91±14.38 and 5.70±0.11 mg/g, respectively, while DES40 yielded 108.28 ± 3.9 and 0.16 ± 0.00 mg/mg/g, respectively. Safety evaluations using a cell-based MTT model with human skin cells in keratinocytes and fibroblasts showed that both DES19 and DES40 were safe at all concentrations tested. These results indicate that a more environmentally friendly solvent technology for the extraction of indigoids from BC using the DES is an efficient and potential application in the textile and pharmaceutical industries.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100090"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823624000679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study focused on the development of an alternative and more environmentally friendly extraction solvent, a deep eutectic system (DES), for extracting indigoid pigments, specifically indigo and indirubin, from Baphicacanthus cusia (BC). BC is recognized in the textile industry as a natural vat dye and in traditional Chinese medicine as "Qing-Dai". It is known for treating inflammatory diseases such as psoriasis. In this study, 46 DES systems were compared with conventional methods. The hydrophobic DES, a terpenoid and fatty acid system comprising thymol:decanoic acid (DES40), and the hydrophilic DES, a choline chloride-based system comprising choline chloride: p-toluenesulfonic acid (DES19), showed significant extraction improvements. DES40 and DES19 achieved approximately 26-fold higher indigo content compared to classical ethanol and outperformed the harsh organic solvent dichloromethane. The green extraction process was optimized using a Box–Behnken design, considering parameters such as temperature, time and co-solvent. DES19 maximized indigo and indirubin content to 270.91±14.38 and 5.70±0.11 mg/g, respectively, while DES40 yielded 108.28 ± 3.9 and 0.16 ± 0.00 mg/mg/g, respectively. Safety evaluations using a cell-based MTT model with human skin cells in keratinocytes and fibroblasts showed that both DES19 and DES40 were safe at all concentrations tested. These results indicate that a more environmentally friendly solvent technology for the extraction of indigoids from BC using the DES is an efficient and potential application in the textile and pharmaceutical industries.