Dispersive properties of metamaterial beams with rod-like resonators: A coupled axial-flexural analysis

IF 3.4 3区 工程技术 Q1 MECHANICS International Journal of Solids and Structures Pub Date : 2024-11-19 DOI:10.1016/j.ijsolstr.2024.113145
Andrea Burlon
{"title":"Dispersive properties of metamaterial beams with rod-like resonators: A coupled axial-flexural analysis","authors":"Andrea Burlon","doi":"10.1016/j.ijsolstr.2024.113145","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the propagation of coupled axial-flexural waves in metamaterial beams with rod-like resonators. Utilizing an exact frequency-dependent stiffness method, based on Euler–Bernoulli beam assumption for rods and host beam, and fully accounting for axial-flexural coupling phenomena, several adimensional parametric analyses are performed for investigating the dispersive properties of the metamaterial beams. The analyses reveal novel and relevant aspects unaddressed in previous studies. Firstly, they show that certain rod configurations lead to significant interference between flexural resonance and the band gaps opened by axial resonance, whereas other configurations enable flexural resonance to open substantial band gaps without interference from axial resonance. Results are complemented by 3D finite element analyses proving evidence of the findings and validating the method. Additional analyses demonstrate that adding a tip mass to the rods, while keeping the total mass of the resonator unchanged, can significantly reduce the opening frequency of the band gaps and can attenuate or remove the interference caused by flexural resonance within the band gaps opened by axial resonance; the rotational inertia of the tip mass can also play a significant role in removing flexural resonance interference. Notably, the paper also reveals that the attenuation phenomena for the coupled problem with a single set of rods are governed by the opening of weak band gaps, rather than by traditional band gaps; this aspect is elucidated by showing Bloch mode shapes of the infinite metamaterial beam and frequency response of the corresponding finite beam. Results and proposed design prove to be useful and promising for locally resonant beams featuring rod-like resonators, both as an alternative to traditional beam-like resonators and for their applicability in the 3D printing process of locally resonant structures, where rods serve as elastic elements in constructing the resonators.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"308 ","pages":"Article 113145"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324005043","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the propagation of coupled axial-flexural waves in metamaterial beams with rod-like resonators. Utilizing an exact frequency-dependent stiffness method, based on Euler–Bernoulli beam assumption for rods and host beam, and fully accounting for axial-flexural coupling phenomena, several adimensional parametric analyses are performed for investigating the dispersive properties of the metamaterial beams. The analyses reveal novel and relevant aspects unaddressed in previous studies. Firstly, they show that certain rod configurations lead to significant interference between flexural resonance and the band gaps opened by axial resonance, whereas other configurations enable flexural resonance to open substantial band gaps without interference from axial resonance. Results are complemented by 3D finite element analyses proving evidence of the findings and validating the method. Additional analyses demonstrate that adding a tip mass to the rods, while keeping the total mass of the resonator unchanged, can significantly reduce the opening frequency of the band gaps and can attenuate or remove the interference caused by flexural resonance within the band gaps opened by axial resonance; the rotational inertia of the tip mass can also play a significant role in removing flexural resonance interference. Notably, the paper also reveals that the attenuation phenomena for the coupled problem with a single set of rods are governed by the opening of weak band gaps, rather than by traditional band gaps; this aspect is elucidated by showing Bloch mode shapes of the infinite metamaterial beam and frequency response of the corresponding finite beam. Results and proposed design prove to be useful and promising for locally resonant beams featuring rod-like resonators, both as an alternative to traditional beam-like resonators and for their applicability in the 3D printing process of locally resonant structures, where rods serve as elastic elements in constructing the resonators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有棒状谐振腔的超材料光束的色散特性:耦合轴向弯曲分析
本文研究了耦合轴向弯曲波在具有棒状谐振腔的超材料梁中的传播。利用精确的频率相关刚度方法,基于欧拉-伯努利梁对杆和主梁的假设,并充分考虑轴向弯曲耦合现象,进行了一些一维参数分析,以研究超材料梁的色散特性。这些分析揭示了以前研究中未涉及的新颖和相关方面。首先,他们表明,某些杆配置导致弯曲共振和轴向共振打开的带隙之间的显著干扰,而其他配置使弯曲共振打开大量带隙而不受轴向共振的干扰。结果由三维有限元分析补充,证明了研究结果的证据并验证了该方法。进一步分析表明,在保持谐振腔总质量不变的情况下,增加棒的尖端质量可以显著降低带隙的打开频率,并可以衰减或消除轴向共振打开的带隙内弯曲共振引起的干扰;尖端质量的转动惯量也可以在消除弯曲共振干扰方面发挥重要作用。值得注意的是,本文还揭示了单组棒耦合问题的衰减现象是由弱带隙的打开而不是传统带隙控制的;通过展示无限超材料梁的布洛赫振型和相应有限梁的频率响应来阐明这方面。结果和提出的设计被证明对于具有棒状谐振器的局部谐振梁是有用的和有前途的,既可以作为传统的棒状谐振器的替代品,也可以用于局部谐振结构的3D打印过程,其中棒状谐振器作为构造谐振器的弹性元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
期刊最新文献
Editorial Board Modeling viscoelasticity–viscoplasticity of high-strain composites for space deployable structures Analytical and experimental studies on the sequential flaring-buckling behavior of combined bi-tubes in blind bolts Mechanics analysis and experimental study of ultra-thin chip peeling from pre-stretching substrates Characterizing and modeling the wide strain rate range behavior of air-filled open-cell polymeric foam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1