{"title":"The contagion model with social dependency","authors":"Yang Li, Hao Sun, Panfei Sun","doi":"10.1016/j.physa.2024.130247","DOIUrl":null,"url":null,"abstract":"<div><div>Empirical evidence demonstrates that contagion relies on social relationships, and the level of social dependency varies for different contagious entities (e.g., diseases or information). To unravel the influence of social dependency on the contagion dynamics, we introduce a social dependency coefficient and present a contagion model with the memory of non-redundant influence on complex networks, which bridges the simple and complex contagions. In this model, individuals exist in one of three states: susceptible, infected, or recovered. Susceptible individuals become infected when the cumulative non-redundant effects they have received (represented by a belief function) exceed their thresholds. By percolation method and mean-field theory, we find that low social dependency can expand the size of final recovered population, yet this effect is not continuous. Specifically, the level of social dependency can be categorized into three intervals based on the critical transmission probability. In the low-dependency interval, contagious entities can spread widely at a low transmission probability. In the medium dependency interval, the critical transmission probability increases stepwise with the social dependency. In the high-dependency interval, the population is free from large outbreaks of contagion at any transmission probability. Besides, the results are not qualitatively affected by the heterogeneous network structure and the theoretical predictions are consistent with the simulation results.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"657 ","pages":"Article 130247"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124007568","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Empirical evidence demonstrates that contagion relies on social relationships, and the level of social dependency varies for different contagious entities (e.g., diseases or information). To unravel the influence of social dependency on the contagion dynamics, we introduce a social dependency coefficient and present a contagion model with the memory of non-redundant influence on complex networks, which bridges the simple and complex contagions. In this model, individuals exist in one of three states: susceptible, infected, or recovered. Susceptible individuals become infected when the cumulative non-redundant effects they have received (represented by a belief function) exceed their thresholds. By percolation method and mean-field theory, we find that low social dependency can expand the size of final recovered population, yet this effect is not continuous. Specifically, the level of social dependency can be categorized into three intervals based on the critical transmission probability. In the low-dependency interval, contagious entities can spread widely at a low transmission probability. In the medium dependency interval, the critical transmission probability increases stepwise with the social dependency. In the high-dependency interval, the population is free from large outbreaks of contagion at any transmission probability. Besides, the results are not qualitatively affected by the heterogeneous network structure and the theoretical predictions are consistent with the simulation results.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.