A general solution procedure for nonlinear single degree of freedom systems including fractional derivatives

IF 2.8 3区 工程技术 Q2 MECHANICS International Journal of Non-Linear Mechanics Pub Date : 2024-11-26 DOI:10.1016/j.ijnonlinmec.2024.104966
Bengi Yıldız , Sümeyye Sınır , Berra Gültekin Sınır
{"title":"A general solution procedure for nonlinear single degree of freedom systems including fractional derivatives","authors":"Bengi Yıldız ,&nbsp;Sümeyye Sınır ,&nbsp;Berra Gültekin Sınır","doi":"10.1016/j.ijnonlinmec.2024.104966","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers oscillations of systems with a single-degree-of-freedom (SDOF) including fractional derivatives. The system is assumed to be an unforced condition. A general solution procedure that can be effectively applied to various types of fractionally damped models, where damping is defined by a fractional derivative, in engineering and physics is proposed. The nonlinearity of the mentioned models contains not only damping but can also consist of acceleration or displacement. This study proposed a new general model that includes but not limited to modified fractional versions of the well-known linear, quadratic, Coulomb and negative damped models. The method of multiple time scales is performed to obtain approximate analytical solutions. The solution, the amplitude, and the phase in the applications are plotted for various fractional derivative parameter values. In order to confirm their validity, our results for the case of the fractional derivative parameter equal to one are compared with others available in the literature.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"169 ","pages":"Article 104966"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224003317","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers oscillations of systems with a single-degree-of-freedom (SDOF) including fractional derivatives. The system is assumed to be an unforced condition. A general solution procedure that can be effectively applied to various types of fractionally damped models, where damping is defined by a fractional derivative, in engineering and physics is proposed. The nonlinearity of the mentioned models contains not only damping but can also consist of acceleration or displacement. This study proposed a new general model that includes but not limited to modified fractional versions of the well-known linear, quadratic, Coulomb and negative damped models. The method of multiple time scales is performed to obtain approximate analytical solutions. The solution, the amplitude, and the phase in the applications are plotted for various fractional derivative parameter values. In order to confirm their validity, our results for the case of the fractional derivative parameter equal to one are compared with others available in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含分数阶导数的非线性单自由度系统的一般解法
本文研究含分数阶导数的单自由度系统的振动问题。系统被假定为非强制条件。提出了一种通解程序,可有效地应用于工程和物理中各种类型的分数阶阻尼模型,其中阻尼由分数阶导数定义。上述模型的非线性不仅包括阻尼,还包括加速度或位移。本研究提出了一个新的通用模型,包括但不限于修改分数版本的众所周知的线性,二次,库仑和负阻尼模型。采用多时间尺度的方法得到近似解析解。对于不同的分数阶导数参数值,绘制了应用中的解、振幅和相位。为了证实其有效性,我们的结果为分数阶导数参数等于1的情况下,与其他文献中可用的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
期刊最新文献
A general solution procedure for nonlinear single degree of freedom systems including fractional derivatives A Lorenz model for an anelastic Oberbeck-Boussinesq system An approximate analytical solution for shear traction in partial reverse slip contacts Corrigendum to “Slip with friction boundary conditions for the Navier–Stokes-α turbulence model and the effects of the friction on the reattachment point” [Int. J. Non–Linear Mech. 159 (2024) 104614] Surface instability of a finitely deformed magnetoelastic half-space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1