Vanadium-site multivalent cation doping strategy of fluorophosphate cathode for low self-discharge sodium-ion batteries

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-11-17 DOI:10.1016/j.jechem.2024.11.003
Xinyuan Wang, Qian Wang, Jiakai Zhang, Yuanzhen Ma, Miao Huang, Xiaojie Liu
{"title":"Vanadium-site multivalent cation doping strategy of fluorophosphate cathode for low self-discharge sodium-ion batteries","authors":"Xinyuan Wang,&nbsp;Qian Wang,&nbsp;Jiakai Zhang,&nbsp;Yuanzhen Ma,&nbsp;Miao Huang,&nbsp;Xiaojie Liu","doi":"10.1016/j.jechem.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub><em><sub>x</sub></em>(PO<sub>4</sub>)<sub>2</sub>F<sub>3−2</sub><em><sub>x</sub></em> (NVPOF) is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity. However, its long-cycle and rate performance are significantly constrained by the low Na<sup>+</sup> electronic conductivity of NVPOF. Furthermore, the prevalent self-discharge phenomenon restricts its applicability in practical applications. In this paper, the cathode material Na<sub>3</sub>V<sub>1.84</sub>Fe<sub>0.16</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> (<em>x =</em> 0.16) was synthesized by quantitatively introducing Fe<sup>3+</sup> into the V-site of NVPOF. The introduction of Fe<sup>3+</sup> significantly reduced the original bandgap and the energy barrier of NVPOF, as demonstrated through density functional theory calculations (DFT). When material <em>x</em> = 0.16 is employed as the cathode material for the sodium-ion battery, the Na<sup>+</sup> diffusion coefficient is significantly enhanced, exhibiting a lower activation energy of 42.93 kJ mol<sup>−1</sup>. Consequently, material <em>x</em> = 0.16 exhibits excellent electrochemical performance (rate capacity: 57.32 mA h g<sup>−1</sup> @10 C, cycling capacity: the specific capacity of 101.3 mA h g<sup>−1</sup> can be stably maintained after 1000 cycles at 1 C current density). It can also achieve a full charge state in only 2.39 min at a current density of 10 C while maintaining low energy loss across various stringent self-discharge tests. In addition, the sodium storage mechanism associated with the three-phase transition of Na<em><sub>X</sub></em>V<sub>1.84</sub>Fe<sub>0.16</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> (<em>X =</em> 1, 2, 3) was elucidated by a series of experiments. In conclusion, this study presents a novel approach to multifunctional advanced sodium-ion battery cathode materials.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 365-376"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007629","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Na3V2O2x(PO4)2F3−2x (NVPOF) is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity. However, its long-cycle and rate performance are significantly constrained by the low Na+ electronic conductivity of NVPOF. Furthermore, the prevalent self-discharge phenomenon restricts its applicability in practical applications. In this paper, the cathode material Na3V1.84Fe0.16(PO4)2F3 (x = 0.16) was synthesized by quantitatively introducing Fe3+ into the V-site of NVPOF. The introduction of Fe3+ significantly reduced the original bandgap and the energy barrier of NVPOF, as demonstrated through density functional theory calculations (DFT). When material x = 0.16 is employed as the cathode material for the sodium-ion battery, the Na+ diffusion coefficient is significantly enhanced, exhibiting a lower activation energy of 42.93 kJ mol−1. Consequently, material x = 0.16 exhibits excellent electrochemical performance (rate capacity: 57.32 mA h g−1 @10 C, cycling capacity: the specific capacity of 101.3 mA h g−1 can be stably maintained after 1000 cycles at 1 C current density). It can also achieve a full charge state in only 2.39 min at a current density of 10 C while maintaining low energy loss across various stringent self-discharge tests. In addition, the sodium storage mechanism associated with the three-phase transition of NaXV1.84Fe0.16(PO4)2F3 (X = 1, 2, 3) was elucidated by a series of experiments. In conclusion, this study presents a novel approach to multifunctional advanced sodium-ion battery cathode materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低自放电钠离子电池氟磷酸盐正极钒位多价阳离子掺杂策略
Na3V2O2x(PO4)2F3−2x (NVPOF)由于具有良好的工作潜力和最佳的理论比容量,被认为是最有前途的钠离子电池正极材料之一。然而,NVPOF的低Na+电子导电性明显限制了其长周期和速率性能。此外,普遍存在的自放电现象限制了其在实际应用中的适用性。本文通过在NVPOF的v位上定量引入Fe3+,合成了正极材料Na3V1.84Fe0.16(PO4)2F3 (x = 0.16)。通过密度泛函理论计算(DFT)表明,Fe3+的引入显著降低了NVPOF的原始带隙和能垒。当材料x = 0.16作为钠离子电池正极材料时,Na+扩散系数显著提高,活化能较低,为42.93 kJ mol−1。因此,材料x = 0.16表现出优异的电化学性能(倍率容量:57.32 mA h g−1 @10 C,循环容量:在1 C电流密度下,循环1000次后可稳定保持101.3 mA h g−1的比容量)。在10℃的电流密度下,它也可以在2.39分钟内达到完全充电状态,同时在各种严格的自放电测试中保持低能量损失。此外,通过一系列实验阐明了NaXV1.84Fe0.16(PO4)2F3 (X = 1,2,3)三相转变相关的钠储存机制。总之,本研究为多功能高级钠离子电池正极材料提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries The electrochemical performance deterioration mechanism of LiNi0.83Mn0.05Co0.12O2 in aqueous slurry and a mitigation strategy In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes Opportunities and challenges in transformer neural networks for battery state estimation: Charge, health, lifetime, and safety Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1